CIRCT

Circuit IR Compilers and Tools

'hw' Dialect

This dialect defines the hw dialect, which is intended to be a generic representation of HW outside of a particular use-case.

Operation Definitions – Structure

hw.globalRef (::circt::hw::GlobalRefOp)

A global reference to uniquely identify eachinstance of an operation

Syntax:

operation ::= `hw.globalRef` $sym_name $namepath attr-dict

This works like a symbol reference to an operation by specifying the instance path to uniquely identify it globally. It can be used to attach per instance metadata (non-local attributes). This also lets components of the path point to a common entity.

Traits: IsolatedFromAbove

Interfaces: Symbol, SymbolUserOpInterface

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute
namepath::mlir::ArrayAttrname reference array attribute

hw.generator.schema (::circt::hw::HWGeneratorSchemaOp)

HW Generator Schema declaration

Syntax:

operation ::= `hw.generator.schema` $sym_name `,` $descriptor `,` $requiredAttrs attr-dict

The “hw.generator.schema” operation declares a kind of generated module by declaring the schema of meta-data required. A generated module instance of a schema is independent of the external method of producing it. It is assumed that for well known schema instances, multiple external tools might exist which can process it. Generator nodes list attributes required by hw.module.generated instances.

For example: generator.schema @MEMORY, “Simple-Memory”, [“ports”, “write_latency”, “read_latency”] module.generated @mymem, @MEMORY(ports) -> (ports) {write_latency=1, read_latency=1, ports=[“read”,“write”]}

Traits: HasParent mlir::ModuleOp

Interfaces: Symbol

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute
descriptor::mlir::StringAttrstring attribute
requiredAttrs::mlir::ArrayAttrstring array attribute

hw.module.extern (::circt::hw::HWModuleExternOp)

HW external Module

The “hw.module.extern” operation represents an external reference to a Verilog module, including a given name and a list of ports.

The ‘verilogName’ attribute (when present) specifies the spelling of the module name in Verilog we can use. TODO: This is a hack because we don’t have proper parameterization in the hw.dialect. We need a way to represent parameterized types instead of just concrete types.

Traits: HasParent mlir::ModuleOp

Interfaces: FunctionOpInterface, HWModuleLike, HWMutableModuleLike, OpAsmOpInterface, Symbol

Attributes:

AttributeMLIR TypeDescription
function_type::mlir::TypeAttrtype attribute of function type
arg_attrs::mlir::ArrayAttrArray of dictionary attributes
res_attrs::mlir::ArrayAttrArray of dictionary attributes
argNames::mlir::ArrayAttrstring array attribute
resultNames::mlir::ArrayAttrstring array attribute
parameters::mlir::ArrayAttrparameter array attribute
verilogName::mlir::StringAttrstring attribute

hw.module.generated (::circt::hw::HWModuleGeneratedOp)

HW Generated Module

The “hw.module.generated” operation represents a reference to an external module that will be produced by some external process. This represents the name and list of ports to be generated.

The ‘verilogName’ attribute (when present) specifies the spelling of the module name in Verilog we can use. See hw.module for an explanation.

Traits: HasParent mlir::ModuleOp, IsolatedFromAbove

Interfaces: FunctionOpInterface, HWModuleLike, HWMutableModuleLike, OpAsmOpInterface, Symbol, SymbolUserOpInterface

Attributes:

AttributeMLIR TypeDescription
generatorKind::mlir::FlatSymbolRefAttrflat symbol reference attribute
function_type::mlir::TypeAttrtype attribute of function type
arg_attrs::mlir::ArrayAttrArray of dictionary attributes
res_attrs::mlir::ArrayAttrArray of dictionary attributes
argNames::mlir::ArrayAttrstring array attribute
resultNames::mlir::ArrayAttrstring array attribute
parameters::mlir::ArrayAttrparameter array attribute
verilogName::mlir::StringAttrstring attribute

hw.module (::circt::hw::HWModuleOp)

HW Module

The “hw.module” operation represents a Verilog module, including a given name, a list of ports, a list of parameters, and a body that represents the connections within the module.

Traits: HasParent mlir::ModuleOp, IsolatedFromAbove, SingleBlockImplicitTerminator

Interfaces: FunctionOpInterface, HWModuleLike, HWMutableModuleLike, OpAsmOpInterface, RegionKindInterface, Symbol

Attributes:

AttributeMLIR TypeDescription
function_type::mlir::TypeAttrtype attribute of function type
arg_attrs::mlir::ArrayAttrArray of dictionary attributes
res_attrs::mlir::ArrayAttrArray of dictionary attributes
argNames::mlir::ArrayAttrstring array attribute
resultNames::mlir::ArrayAttrstring array attribute
parameters::mlir::ArrayAttrparameter array attribute
comment::mlir::StringAttrstring attribute

hw.hierpath (::circt::hw::HierPathOp)

Hierarchical path specification

The “hw.hierpath” operation represents a path through the hierarchy. This is used to specify namable things for use in other operations, for example in verbatim substitution. Non-local annotations also use these.

Traits: IsolatedFromAbove

Interfaces: InnerRefUserOpInterface, Symbol

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute
namepath::mlir::ArrayAttrname reference array attribute

hw.instance (::circt::hw::InstanceOp)

Create an instance of a module

This represents an instance of a module. The inputs and results are the referenced module’s inputs and outputs. The argNames and resultNames attributes must match the referenced module.

Any parameters in the “old” format (slated to be removed) are stored in the oldParameters dictionary.

Interfaces: HWInstanceLike, OpAsmOpInterface, SymbolUserOpInterface

Attributes:

AttributeMLIR TypeDescription
instanceName::mlir::StringAttrstring attribute
moduleName::mlir::FlatSymbolRefAttrflat symbol reference attribute
argNames::mlir::ArrayAttrstring array attribute
resultNames::mlir::ArrayAttrstring array attribute
parameters::mlir::ArrayAttrparameter array attribute
inner_sym::mlir::StringAttrstring attribute

Operands:

OperandDescription
inputsany type

Results:

ResultDescription
resultsany type

hw.output (::circt::hw::OutputOp)

HW termination operation

Syntax:

operation ::= `hw.output` attr-dict ($outputs^ `:` qualified(type($outputs)))?

“hw.output” marks the end of a region in the HW dialect and the values to put on the output ports.

Traits: AlwaysSpeculatableImplTrait, HasParent, ReturnLike, Terminator

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
outputsany type

hw.probe (::circt::hw::ProbeOp)

Probe values for use in remote references

Syntax:

operation ::= `hw.probe` $inner_sym attr-dict (`,` $captured^ `:` qualified(type($captured)))?

Captures values without binding to any accidental name. This allows capturing names holding values of interest while allowing the name to resolved only at emission time.

Attributes:

AttributeMLIR TypeDescription
inner_sym::mlir::StringAttrstring attribute

Operands:

OperandDescription
capturedany type

Operation Definitions – Miscellaneous

hw.bitcast (::circt::hw::BitcastOp)

Reinterpret one value to another value of the same size and
potentially different type.  See the `hw` dialect rationale document for
more details.

Syntax:

operation ::= `hw.bitcast` $input attr-dict `:` functional-type($input, $result)

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputType wherein the bitwidth in hardware is known

Results:

ResultDescription
resultType wherein the bitwidth in hardware is known

hw.constant (::circt::hw::ConstantOp)

Produce a constant value

The constant operation produces a constant value of standard integer type without a sign.

  %result = hw.constant 42 : t1

Traits: AlwaysSpeculatableImplTrait, ConstantLike, FirstAttrDerivedResultType

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), OpAsmOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
value::mlir::IntegerAttrarbitrary integer attribute

Results:

ResultDescription
resulta signless integer bitvector

hw.enum.constant (::circt::hw::EnumConstantOp)

Produce a constant enumeration value.

The enum.constant operation produces an enumeration value of the specified enum value attribute.

  %0 = hw.enum.constant A : !hw.enum<A, B, C>

Traits: AlwaysSpeculatableImplTrait, ConstantLike

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), OpAsmOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
field::circt::hw::EnumFieldAttrEnumeration field attribute

Results:

ResultDescription
resulta EnumType

hw.param.value (::circt::hw::ParamValueOp)

Return the value of a parameter expression as an SSA value that may be used
by other ops.

Syntax:

operation ::= `hw.param.value` custom<ParamValue>($value, qualified(type($result))) attr-dict

Traits: AlwaysSpeculatableImplTrait, ConstantLike, FirstAttrDerivedResultType

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
value::mlir::Attributeany attribute

Results:

ResultDescription
resulta known primitive element

Operation Definitions – Aggregates

hw.aggregate_constant (::circt::hw::AggregateConstantOp)

Produce a constant aggregate value

Syntax:

operation ::= `hw.aggregate_constant` $fields attr-dict `:` type($result)

This operation produces a constant value of an aggregate type. Clock and reset values are supported. For nested aggregates, embedded arrays are used.

Examples:

  %result = hw.aggregate.constant [1 : i1, 2 : i2, 3 : i2] : !hw.struct<a: i8, b: i8, c: i8>
  %result = hw.aggregate.constant [1 : i1, [2 : i2, 3 : i2]] : !hw.struct<a: i8, b: vector<i8, 2>>

Traits: AlwaysSpeculatableImplTrait, ConstantLike

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
fields::mlir::ArrayAttrarray attribute

Results:

ResultDescription
resultan ArrayType or StructType

hw.array_concat (::circt::hw::ArrayConcatOp)

Concatenate some arrays

Syntax:

operation ::= `hw.array_concat` $inputs attr-dict `:` custom<ArrayConcatTypes>(type($inputs), qualified(type($result)))

Creates an array by concatenating a variable set of arrays. One or more values must be listed.

// %a, %b, %c are hw arrays of i4 with sizes 2, 5, and 4 respectively.
%array = hw.array_concat %a, %b, %c : (2, 5, 4 x i4)
// %array is !hw.array<11 x i4>

See the HW-SV rationale document for details on operand ordering.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputsan ArrayType

Results:

ResultDescription
resultan ArrayType

hw.array_create (::circt::hw::ArrayCreateOp)

Create an array from values

Creates an array from a variable set of values. One or more values must be listed.

// %a, %b, %c are all i4
%array = hw.array_create %a, %b, %c : i4

See the HW-SV rationale document for details on operand ordering.

Traits: AlwaysSpeculatableImplTrait, SameTypeOperands

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputsa type without inout

Results:

ResultDescription
resultan ArrayType

hw.array_get (::circt::hw::ArrayGetOp)

Get the value in an array at the specified index

Syntax:

operation ::= `hw.array_get` $input`[`$index`]` attr-dict `:` qualified(type($input)) `,` qualified(type($index))

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputan ArrayType
indexa signless integer bitvector

Results:

ResultDescription
resulta type without inout

hw.array_slice (::circt::hw::ArraySliceOp)

Get a range of values from an array

Syntax:

operation ::= `hw.array_slice` $input`[`$lowIndex`]` attr-dict `:`
              `(` custom<SliceTypes>(type($input), qualified(type($lowIndex))) `)` `->` qualified(type($dst))

Extracts a sub-range from an array. The range is from lowIndex to lowIndex + the number of elements in the return type, non-inclusive on the high end. For instance,

// Slices 16 elements starting at '%offset'.
%subArray = hw.slice %largerArray at %offset :
    (!hw.array<1024xi8>) -> !hw.array<16xi8>

Would translate to the following SystemVerilog:

logic [7:0][15:0] subArray = largerArray[offset +: 16];

Width of ‘idx’ is defined to be the precise number of bits required to index the ‘input’ array. More precisely: for an input array of size M, the width of ‘idx’ is ceil(log2(M)). Lower and upper bound indexes which are larger than the size of the ‘input’ array results in undefined behavior.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputan ArrayType
lowIndexa signless integer bitvector

Results:

ResultDescription
dstan ArrayType

hw.struct_create (::circt::hw::StructCreateOp)

Create a struct from constituent parts.

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputa type without inout

Results:

ResultDescription
resulta StructType

hw.struct_explode (::circt::hw::StructExplodeOp)

Expand a struct into its constituent parts.

%result:2 = hw.struct_explode %input : !hw.struct<foo: i19, bar: i7>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), OpAsmOpInterface

Effects: MemoryEffects::Effect{}

Operands:

OperandDescription
inputa StructType

Results:

ResultDescription
resulta type without inout

hw.struct_extract (::circt::hw::StructExtractOp)

Extract a named field from a struct.

%result = hw.struct_extract %input["field"] : !hw.struct<field: type>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface), OpAsmOpInterface

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
field::mlir::StringAttrstring attribute

Operands:

OperandDescription
inputa StructType

Results:

ResultDescription
resulta type without inout

hw.struct_inject (::circt::hw::StructInjectOp)

Inject a value into a named field of a struct.

%result = hw.struct_inject %input["field"], %newValue
    : !hw.struct<field: type>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
field::mlir::StringAttrstring attribute

Operands:

OperandDescription
inputa StructType
newValuea type without inout

Results:

ResultDescription
resulta StructType

hw.union_create (::circt::hw::UnionCreateOp)

Create a union with the specified value.

Create a union with the value ‘input’, which can then be accessed via the specified field.

  %x = hw.constant 0 : i3
  %z = hw.union_create "bar", %x : !hw.union<bar: i3, baz: i8>

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
field::mlir::StringAttrstring attribute

Operands:

OperandDescription
inputa type without inout

Results:

ResultDescription
resulta UnionType

hw.union_extract (::circt::hw::UnionExtractOp)

Get a union member.

Get the value of a union, interpreting it as the type of the specified member field. Extracting a value belonging to a different field than the union was initially created will result in undefined behavior.

  %u = ...
  %v = hw.union_extract %u["foo"] : !hw.union<foo: i3, bar: i16>
  // %v is of type 'i3'

Traits: AlwaysSpeculatableImplTrait

Interfaces: ConditionallySpeculatable, NoMemoryEffect (MemoryEffectOpInterface)

Effects: MemoryEffects::Effect{}

Attributes:

AttributeMLIR TypeDescription
field::mlir::StringAttrstring attribute

Operands:

OperandDescription
inputa UnionType

Results:

ResultDescription
resulta type without inout

Operation Definitions – Type Declarations

hw.type_scope (::circt::hw::TypeScopeOp)

Type declaration wrapper.

Syntax:

operation ::= `hw.type_scope` $sym_name $body attr-dict

An operation whose one body block contains type declarations. This op provides a scope for type declarations at the top level of an MLIR module. It is a symbol that may be looked up within the module, as well as a symbol table itself, so type declarations may be looked up.

Traits: NoRegionArguments, NoTerminator, SingleBlock, SymbolTable

Interfaces: Symbol

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute

hw.typedecl (::circt::hw::TypedeclOp)

Type declaration.

Syntax:

operation ::= `hw.typedecl` $sym_name (`,` $verilogName^)? `:` $type attr-dict

Associate a symbolic name with a type. Traits: HasParent

Interfaces: Symbol

Attributes:

AttributeMLIR TypeDescription
sym_name::mlir::StringAttrstring attribute
type::mlir::TypeAttrany type attribute
verilogName::mlir::StringAttrstring attribute

Attribute Definitions

EnumFieldAttr

Enumeration field attribute

This attribute represents a field of an enumeration.

Examples:

  #hw.enum.value<A, !hw.enum<A, B, C>>

Parameters:

ParameterC++ typeDescription
field::mlir::StringAttr
type::mlir::TypeAttr

FileListAttr

Ouput filelist attribute

Syntax:

#hw.output_filelist<
  ::mlir::StringAttr   # filename
>

This attribute represents an output filelist for something which will be printed. The filename string is the file which the filename of the operation to be output to.

When ExportVerilog runs, some of the files produced are lists of other files which are produced. Each filelist exported contains entities’ output file with FileListAttr marked.

Examples:

  #hw.ouput_filelist<"/home/tester/t.F">
  #hw.ouput_filelist<"t.f">

Parameters:

ParameterC++ typeDescription
filename::mlir::StringAttr

OutputFileAttr

Output file attribute

This attribute represents an output file for something which will be printed. The filename string is the file to be output to. If filename ends in a / it is considered an output directory.

When ExportVerilog runs, one of the files produced is a list of all other files which are produced. The flag excludeFromFileList controls if this file should be included in this list. If any OutputFileAttr referring to the same file sets this to true, it will be included in the file list. This option defaults to false.

For each file emitted by the verilog emitter, certain prelude output will be included before the main content. The flag includeReplicatedOps can be used to disable the addition of the prelude text. All OutputFileAttrs referring to the same file must use a consistent setting for this value. This option defaults to true.

Examples:

  #hw.ouput_file<"/home/tester/t.sv">
  #hw.ouput_file<"t.sv", excludeFromFileList, includeReplicatedOps>

Parameters:

ParameterC++ typeDescription
filename::mlir::StringAttr
excludeFromFilelist::mlir::BoolAttr
includeReplicatedOps::mlir::BoolAttr

ParamDeclAttr

Module or instance parameter definition

An attribute describing a module parameter, or instance parameter specification.

Parameters:

ParameterC++ typeDescription
name::mlir::StringAttr
type::mlir::Type
value::mlir::Attribute

ParamDeclRefAttr

Is a reference to a parameter value.

Parameters:

ParameterC++ typeDescription
name::mlir::StringAttr
type::mlir::Type

ParamExprAttr

Parameter expression combining operands

Parameters:

ParameterC++ typeDescription
opcodePEO
operands::llvm::ArrayRef<::mlir::TypedAttr>
type::mlir::Type

ParamVerbatimAttr

Represents text to emit directly to SystemVerilog for a parameter

Parameters:

ParameterC++ typeDescription
value::mlir::StringAttr
type::mlir::Type

GlobalRefAttr

Refer to a non-local symbol

Syntax:

#hw.globalNameRef<
  ::mlir::FlatSymbolRefAttr   # glblSym
>

This works like a symbol reference, but to a global symbol with a possible unique instance path.

Parameters:

ParameterC++ typeDescription
glblSym::mlir::FlatSymbolRefAttr

InnerRefAttr

Refer to a name inside a module

This works like a symbol reference, but to a name inside a module.

Parameters:

ParameterC++ typeDescription
moduleRef::mlir::FlatSymbolRefAttr
name::mlir::StringAttr

Type Definitions

ArrayType

fixed-sized array

Fixed sized HW arrays are roughly similar to C arrays. On the wire (vs. in a memory), arrays are always packed. Memory layout is not defined as it does not need to be since in silicon there is not implicit memory sharing.

Parameters:

ParameterC++ typeDescription
elementType::mlir::Type
sizeAttr::mlir::Attribute

EnumType

HW Enum type

Represents an enumeration of values. Enums are interpreted as integers with a synthesis-defined encoding. !hw.enum<field1, field2>

Parameters:

ParameterC++ typeDescription
fieldsmlir::ArrayAttr

InOutType

inout type

InOut type is used for model operations and values that have “connection” semantics, instead of typical dataflow behavior. This is used for wires and inout ports in Verilog.

Parameters:

ParameterC++ typeDescription
elementType::mlir::Type

IntType

parameterized-width integer

Parameterized integer types are equivalent to the MLIR standard integer type: it is signless, and may be any width integer. This type represents the case when the width is a parameter in the HW dialect sense.

Parameters:

ParameterC++ typeDescription
width::mlir::TypedAttr

StructType

HW struct type

Represents a structure of name, value pairs. !hw.struct<fieldName1: Type1, fieldName2: Type2>

Parameters:

ParameterC++ typeDescription
elements::llvm::ArrayRef<::circt::hw::StructType::FieldInfo>struct fields

TypeAliasType

An symbolic reference to a type declaration

A TypeAlias is parameterized by a SymbolRefAttr, which points to a TypedeclOp. The root reference should refer to a TypeScope within the same outer ModuleOp, and the leaf reference should refer to a type within that TypeScope. A TypeAlias is further parameterized by the inner type, which is needed to be known at the time the type is parsed.

Upon construction, a TypeAlias stores the symbol reference and type, and canonicalizes the type to resolve any nested type aliases. The canonical type is also cached to avoid recomputing it when needed.

Parameters:

ParameterC++ typeDescription
refmlir::SymbolRefAttr
innerTypemlir::Type
canonicalTypemlir::Type

UnionType

An untagged union of types

Parameters:

ParameterC++ typeDescription
elements::llvm::ArrayRef<::circt::hw::UnionType::FieldInfo>union fields

UnpackedArrayType

SystemVerilog ‘unpacked’ fixed-sized array

Unpacked arrays are a more flexible array representation than packed arrays, and are typically used to model memories. See SystemVerilog Spec 7.4.2.

Parameters:

ParameterC++ typeDescription
elementType::mlir::Type
sizeAttr::mlir::Attribute

HWInstanceLike (HWInstanceLike)

Provide common module information.

Methods:

instanceName

::llvm::StringRef instanceName();

Get the name of the instance NOTE: This method must be implemented by the user.

instanceNameAttr

::mlir::StringAttr instanceNameAttr();

Get the name of the instance NOTE: This method must be implemented by the user.

referencedModuleName

::llvm::StringRef referencedModuleName();

Get the name of the instantiated module NOTE: This method must be implemented by the user.

referencedModuleNameAttr

::mlir::StringAttr referencedModuleNameAttr();

Get the name of the instantiated module NOTE: This method must be implemented by the user.

getReferencedModule

::mlir::Operation *getReferencedModule();

Get the referenced module NOTE: This method must be implemented by the user.

HWModuleLike (HWModuleLike)

Provide common module information.

Methods:

isPublic

bool isPublic();

Check whether the module is publicly visible

moduleName

::llvm::StringRef moduleName();

Get the module name NOTE: This method must be implemented by the user.

moduleNameAttr

::mlir::StringAttr moduleNameAttr();

Get the module name NOTE: This method must be implemented by the user.

getNumPorts

size_t getNumPorts();

Get the number of ports NOTE: This method must be implemented by the user.

getPortSymbolAttr

::circt::hw::InnerSymAttr getPortSymbolAttr(size_t portIndex);

Get a port symbol attribute NOTE: This method must be implemented by the user.

HWMutableModuleLike (HWMutableModuleLike)

Provide methods to mutate a module.

Methods:

getNumInputs

unsigned getNumInputs();

Return the number of inputs to this module NOTE: This method must be implemented by the user.

getNumOutputs

unsigned getNumOutputs();

Return the number of outputs from this module NOTE: This method must be implemented by the user.

getArgNames

mlir::ArrayAttr getArgNames();

Return the names of the inputs this module NOTE: This method must be implemented by the user.

getResultNames

mlir::ArrayAttr getResultNames();

Return the names of the outputs this module NOTE: This method must be implemented by the user.

modifyPorts

void modifyPorts(ArrayRef<std::pair<unsigned, circt::hw::PortInfo>> insertInputs, ArrayRef<std::pair<unsigned, circt::hw::PortInfo>> insertOutputs, ArrayRef<unsigned> eraseInputs, ArrayRef<unsigned> eraseOutputs);

Insert and remove input and output ports

insertPorts

void insertPorts(ArrayRef<std::pair<unsigned, circt::hw::PortInfo>> insertInputs, ArrayRef<std::pair<unsigned, circt::hw::PortInfo>> insertOutputs);

Insert ports into this module NOTE: This method must be implemented by the user.

erasePorts

void erasePorts(ArrayRef<unsigned> eraseInputs, ArrayRef<unsigned> eraseOutputs);

Erase ports from this module NOTE: This method must be implemented by the user.

appendOutputs

void appendOutputs(ArrayRef<std::pair<StringAttr, Value>> outputs);

Append output values to this module NOTE: This method must be implemented by the user.

InnerRefUserOpInterface (InnerRefUserOpInterface)

This interface describes an operation that may use a InnerRef. This interface allows for users of inner symbols to hook into verification and other inner symbol related utilities that are either costly or otherwise disallowed within a traditional operation.

Methods:

verifyInnerRefs

::mlir::LogicalResult verifyInnerRefs(::circt::hw::InnerRefNamespace&ns);

Verify the inner ref uses held by this operation. NOTE: This method must be implemented by the user.

InnerSymbolOpInterface (InnerSymbol)

This interface describes an operation that may define an inner_sym. An inner_sym operation resides in arbitrarily-nested regions of a region that defines a InnerSymbolTable. Inner Symbols are different from normal symbols due to MLIR symbol table resolution rules. Specifically normal symbols are resolved by first going up to the closest parent symbol table and resolving from there (recursing down for complex symbol paths). In HW and SV, modules define a symbol in a circuit or std.module symbol table. For instances to be able to resolve the modules they instantiate, the symbol use in an instance must resolve in the top-level symbol table. If a module were a symbol table, instances resolving a symbol would start from their own module, never seeing other modules (since resolution would start in the parent module of the instance and be unable to go to the global scope). The second problem arises from nesting. Symbols defining ops must be immediate children of a symbol table. HW and SV operations which define a inner_sym are grandchildren, at least, of a symbol table and may be much further nested. Lastly, ports need to define inner_sym, something not allowed by normal symbols.

Any operation implementing an InnerSymbol may have the inner symbol be optional and all methods should be robuse to the attribute not being defined.

Methods:

getInnerNameAttr

::mlir::StringAttr getInnerNameAttr();

Returns the name of this inner symbol. NOTE: This method must be implemented by the user.

getInnerName

::std::optional<::mlir::StringRef> getInnerName();

Returns the name of this inner symbol. NOTE: This method must be implemented by the user.

setInnerSymbol

void setInnerSymbol(::mlir::StringAttr name);

Sets the name of this inner symbol. NOTE: This method must be implemented by the user.

getInnerRef

::circt::hw::InnerRefAttr getInnerRef();

Returns an InnerRef to this operation. Must have inner symbol. NOTE: This method must be implemented by the user.

getInnerSymAttr

::circt::hw::InnerSymAttr getInnerSymAttr();

Returns the InnerSymAttr. NOTE: This method must be implemented by the user.

FieldIDTypeInterface (FieldIDTypeInterface)

Common methods for types which can be indexed by a FieldID.

Methods:

getMaxFieldID

uint64_t getMaxFieldID();

Get the maximum field ID for this type NOTE: This method must be implemented by the user.

'hw' Dialect Docs