CIRCT 22.0.0git
Loading...
Searching...
No Matches
MemToRegOfVec.cpp
Go to the documentation of this file.
1//===- MemToRegOfVec.cpp - MemToRegOfVec Pass -----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the MemToRegOfVec pass.
10//
11//===----------------------------------------------------------------------===//
12
19#include "mlir/IR/Threading.h"
20#include "mlir/Pass/Pass.h"
21#include "llvm/Support/Debug.h"
22
23#define DEBUG_TYPE "mem-to-reg-of-vec"
24
25namespace circt {
26namespace firrtl {
27#define GEN_PASS_DEF_MEMTOREGOFVEC
28#include "circt/Dialect/FIRRTL/Passes.h.inc"
29} // namespace firrtl
30} // namespace circt
31
32using namespace circt;
33using namespace firrtl;
34
35namespace {
36struct MemToRegOfVecPass
37 : public circt::firrtl::impl::MemToRegOfVecBase<MemToRegOfVecPass> {
38 using Base::Base;
39
40 void runOnOperation() override {
41 auto circtOp = getOperation();
42 auto &instanceInfo = getAnalysis<InstanceInfo>();
43
46 return markAllAnalysesPreserved();
47
48 DenseSet<Operation *> dutModuleSet;
49 for (auto moduleOp : circtOp.getOps<FModuleOp>())
50 if (instanceInfo.anyInstanceInEffectiveDesign(moduleOp))
51 dutModuleSet.insert(moduleOp);
52
53 mlir::parallelForEach(circtOp.getContext(), dutModuleSet,
54 [&](Operation *op) {
55 if (auto mod = dyn_cast<FModuleOp>(op))
56 runOnModule(mod);
57 });
58 }
59
60 void runOnModule(FModuleOp mod) {
61
62 mod.getBodyBlock()->walk([&](MemOp memOp) {
63 LLVM_DEBUG(llvm::dbgs() << "\n Memory op:" << memOp);
64
65 auto firMem = memOp.getSummary();
66 // Ignore if the memory is candidate for macro replacement.
67 // The requirements for macro replacement:
68 // 1. read latency and write latency of one.
69 // 2. only one readwrite port or write port.
70 // 3. zero or one read port.
71 // 4. undefined read-under-write behavior.
72 if (replSeqMem &&
73 ((firMem.readLatency == 1 && firMem.writeLatency == 1) &&
74 (firMem.numWritePorts + firMem.numReadWritePorts == 1) &&
75 (firMem.numReadPorts <= 1) && firMem.dataWidth > 0))
76 return;
77
78 generateMemory(memOp, firMem);
79 ++numConvertedMems;
80 memOp.erase();
81 });
82 }
83 Value addPipelineStages(ImplicitLocOpBuilder &b, size_t stages, Value clock,
84 Value pipeInput, StringRef name, Value gate = {}) {
85 if (!stages)
86 return pipeInput;
87
88 while (stages--) {
89 auto reg = RegOp::create(b, pipeInput.getType(), clock, name).getResult();
90 if (gate) {
91 WhenOp::create(b, gate, /*withElseRegion*/ false,
92 [&]() { MatchingConnectOp::create(b, reg, pipeInput); });
93 } else
94 MatchingConnectOp::create(b, reg, pipeInput);
95
96 pipeInput = reg;
97 }
98
99 return pipeInput;
100 }
101
102 Value getClock(ImplicitLocOpBuilder &builder, Value bundle) {
103 return SubfieldOp::create(builder, bundle, "clk");
104 }
105
106 Value getAddr(ImplicitLocOpBuilder &builder, Value bundle) {
107 return SubfieldOp::create(builder, bundle, "addr");
108 }
109
110 Value getWmode(ImplicitLocOpBuilder &builder, Value bundle) {
111 return SubfieldOp::create(builder, bundle, "wmode");
112 }
113
114 Value getEnable(ImplicitLocOpBuilder &builder, Value bundle) {
115 return SubfieldOp::create(builder, bundle, "en");
116 }
117
118 Value getMask(ImplicitLocOpBuilder &builder, Value bundle) {
119 auto bType = type_cast<BundleType>(bundle.getType());
120 if (bType.getElement("mask"))
121 return SubfieldOp::create(builder, bundle, "mask");
122 return SubfieldOp::create(builder, bundle, "wmask");
123 }
124
125 Value getData(ImplicitLocOpBuilder &builder, Value bundle,
126 bool getWdata = false) {
127 auto bType = type_cast<BundleType>(bundle.getType());
128 if (bType.getElement("data"))
129 return SubfieldOp::create(builder, bundle, "data");
130 if (bType.getElement("rdata") && !getWdata)
131 return SubfieldOp::create(builder, bundle, "rdata");
132 return SubfieldOp::create(builder, bundle, "wdata");
133 }
134
135 void generateRead(const FirMemory &firMem, Value clock, Value addr,
136 Value enable, Value data, Value regOfVec,
137 ImplicitLocOpBuilder &builder) {
138 if (ignoreReadEnable) {
139 // If read enable is ignored, then guard the address update with read
140 // enable.
141 for (size_t j = 0, e = firMem.readLatency; j != e; ++j) {
142 auto enLast = enable;
143 if (j < e - 1)
144 enable = addPipelineStages(builder, 1, clock, enable, "en");
145 addr = addPipelineStages(builder, 1, clock, addr, "addr", enLast);
146 }
147 } else {
148 // Add pipeline stages to respect the read latency. One register for each
149 // latency cycle.
150 enable =
151 addPipelineStages(builder, firMem.readLatency, clock, enable, "en");
152 addr =
153 addPipelineStages(builder, firMem.readLatency, clock, addr, "addr");
154 }
155
156 // Read the register[address] into a temporary.
157 Value rdata = SubaccessOp::create(builder, regOfVec, addr);
158 if (!ignoreReadEnable) {
159 // Initialize read data out with invalid.
160 MatchingConnectOp::create(
161 builder, data, InvalidValueOp::create(builder, data.getType()));
162 // If enable is true, then connect the data read from memory register.
163 WhenOp::create(builder, enable, /*withElseRegion*/ false, [&]() {
164 MatchingConnectOp::create(builder, data, rdata);
165 });
166 } else {
167 // Ignore read enable signal.
168 MatchingConnectOp::create(builder, data, rdata);
169 }
170 }
171
172 void generateWrite(const FirMemory &firMem, Value clock, Value addr,
173 Value enable, Value maskBits, Value wdataIn,
174 Value regOfVec, ImplicitLocOpBuilder &builder) {
175
176 auto numStages = firMem.writeLatency - 1;
177 // Add pipeline stages to respect the write latency. Intermediate registers
178 // for each stage.
179 addr = addPipelineStages(builder, numStages, clock, addr, "addr");
180 enable = addPipelineStages(builder, numStages, clock, enable, "en");
181 wdataIn = addPipelineStages(builder, numStages, clock, wdataIn, "wdata");
182 maskBits = addPipelineStages(builder, numStages, clock, maskBits, "wmask");
183 // Create the register access.
184 FIRRTLBaseValue rdata = SubaccessOp::create(builder, regOfVec, addr);
185
186 // The tuple for the access to individual fields of an aggregate data type.
187 // Tuple::<register, data, mask>
188 // The logic:
189 // if (mask)
190 // register = data
191 SmallVector<std::tuple<Value, Value, Value>, 8> loweredRegDataMaskFields;
192
193 // Write to each aggregate data field is guarded by the corresponding mask
194 // field. This means we have to generate read and write access for each
195 // individual field of the aggregate type.
196 // There are two options to handle this,
197 // 1. FlattenMemory: cast the aggregate data into a UInt and generate
198 // appropriate mask logic.
199 // 2. Create access for each individual field of the aggregate type.
200 // Here we implement the option 2 using getFields.
201 // getFields, creates an access to each individual field of the data and
202 // mask, and the corresponding field into the register. It populates
203 // the loweredRegDataMaskFields vector.
204 // This is similar to what happens in LowerTypes.
205 //
206 if (!getFields(rdata, wdataIn, maskBits, loweredRegDataMaskFields,
207 builder)) {
208 wdataIn.getDefiningOp()->emitOpError(
209 "Cannot convert memory to bank of registers");
210 return;
211 }
212 // If enable:
213 WhenOp::create(builder, enable, /*withElseRegion*/ false, [&]() {
214 // For each data field. Only one field if not aggregate.
215 for (auto regDataMask : loweredRegDataMaskFields) {
216 auto regField = std::get<0>(regDataMask);
217 auto dataField = std::get<1>(regDataMask);
218 auto maskField = std::get<2>(regDataMask);
219 // If mask, then update the register field.
220 WhenOp::create(builder, maskField, /*withElseRegion*/ false, [&]() {
221 MatchingConnectOp::create(builder, regField, dataField);
222 });
223 }
224 });
225 }
226
227 void generateReadWrite(const FirMemory &firMem, Value clock, Value addr,
228 Value enable, Value maskBits, Value wdataIn,
229 Value rdataOut, Value wmode, Value regOfVec,
230 ImplicitLocOpBuilder &builder) {
231
232 // Add pipeline stages to respect the write latency. Intermediate registers
233 // for each stage. Number of pipeline stages, max of read/write latency.
234 auto numStages = std::max(firMem.readLatency, firMem.writeLatency) - 1;
235 addr = addPipelineStages(builder, numStages, clock, addr, "addr");
236 enable = addPipelineStages(builder, numStages, clock, enable, "en");
237 wdataIn = addPipelineStages(builder, numStages, clock, wdataIn, "wdata");
238 maskBits = addPipelineStages(builder, numStages, clock, maskBits, "wmask");
239
240 // Read the register[address] into a temporary.
241 Value rdata = SubaccessOp::create(builder, regOfVec, addr);
242
243 SmallVector<std::tuple<Value, Value, Value>, 8> loweredRegDataMaskFields;
244 if (!getFields(rdata, wdataIn, maskBits, loweredRegDataMaskFields,
245 builder)) {
246 wdataIn.getDefiningOp()->emitOpError(
247 "Cannot convert memory to bank of registers");
248 return;
249 }
250 // Initialize read data out with invalid.
251 MatchingConnectOp::create(
252 builder, rdataOut, InvalidValueOp::create(builder, rdataOut.getType()));
253 // If enable:
254 WhenOp::create(builder, enable, /*withElseRegion*/ false, [&]() {
255 // If write mode:
256 WhenOp::create(
257 builder, wmode, true,
258 // Write block:
259 [&]() {
260 // For each data field. Only one field if not aggregate.
261 for (auto regDataMask : loweredRegDataMaskFields) {
262 auto regField = std::get<0>(regDataMask);
263 auto dataField = std::get<1>(regDataMask);
264 auto maskField = std::get<2>(regDataMask);
265 // If mask true, then set the field.
266 WhenOp::create(
267 builder, maskField, /*withElseRegion*/ false, [&]() {
268 MatchingConnectOp::create(builder, regField, dataField);
269 });
270 }
271 },
272 // Read block:
273 [&]() { MatchingConnectOp::create(builder, rdataOut, rdata); });
274 });
275 }
276
277 // Generate individual field accesses for an aggregate type. Return false if
278 // it fails. Which can happen if invalid fields are present of the mask and
279 // input types donot match. The assumption is that, \p reg and \p input have
280 // exactly the same type. And \p mask has the same bundle fields, but each
281 // field is of type UInt<1> So, populate the \p results with each field
282 // access. For example, the first entry should be access to first field of \p
283 // reg, first field of \p input and first field of \p mask.
284 bool getFields(Value reg, Value input, Value mask,
285 SmallVectorImpl<std::tuple<Value, Value, Value>> &results,
286 ImplicitLocOpBuilder &builder) {
287
288 // Check if the number of fields of mask and input type match.
289 auto isValidMask = [&](FIRRTLType inType, FIRRTLType maskType) -> bool {
290 if (auto bundle = type_dyn_cast<BundleType>(inType)) {
291 if (auto mBundle = type_dyn_cast<BundleType>(maskType))
292 return mBundle.getNumElements() == bundle.getNumElements();
293 } else if (auto vec = type_dyn_cast<FVectorType>(inType)) {
294 if (auto mVec = type_dyn_cast<FVectorType>(maskType))
295 return mVec.getNumElements() == vec.getNumElements();
296 } else
297 return true;
298 return false;
299 };
300
301 std::function<bool(Value, Value, Value)> flatAccess =
302 [&](Value reg, Value input, Value mask) -> bool {
303 FIRRTLType inType = type_cast<FIRRTLType>(input.getType());
304 if (!isValidMask(inType, type_cast<FIRRTLType>(mask.getType()))) {
305 input.getDefiningOp()->emitOpError("Mask type is not valid");
306 return false;
307 }
309 .Case<BundleType>([&](BundleType bundle) {
310 for (size_t i = 0, e = bundle.getNumElements(); i != e; ++i) {
311 auto regField = SubfieldOp::create(builder, reg, i);
312 auto inputField = SubfieldOp::create(builder, input, i);
313 auto maskField = SubfieldOp::create(builder, mask, i);
314 if (!flatAccess(regField, inputField, maskField))
315 return false;
316 }
317 return true;
318 })
319 .Case<FVectorType>([&](auto vector) {
320 for (size_t i = 0, e = vector.getNumElements(); i != e; ++i) {
321 auto regField = SubindexOp::create(builder, reg, i);
322 auto inputField = SubindexOp::create(builder, input, i);
323 auto maskField = SubindexOp::create(builder, mask, i);
324 if (!flatAccess(regField, inputField, maskField))
325 return false;
326 }
327 return true;
328 })
329 .Case<IntType>([&](auto iType) {
330 results.push_back({reg, input, mask});
331 return iType.getWidth().has_value();
332 })
333 .Default([&](auto) { return false; });
334 };
335 if (flatAccess(reg, input, mask))
336 return true;
337 return false;
338 }
339
340 void scatterMemTapAnno(RegOp op, ArrayAttr attr,
341 ImplicitLocOpBuilder &builder) {
342 AnnotationSet annos(attr);
343 SmallVector<Attribute> regAnnotations;
344 auto vecType = type_cast<FVectorType>(op.getResult().getType());
345 for (auto anno : annos) {
346 if (anno.isClass(memTapSourceClass)) {
347 for (size_t i = 0, e = type_cast<FVectorType>(op.getResult().getType())
348 .getNumElements();
349 i != e; ++i) {
350 NamedAttrList newAnno;
351 newAnno.append("class", anno.getMember("class"));
352 newAnno.append("circt.fieldID",
353 builder.getI64IntegerAttr(vecType.getFieldID(i)));
354 newAnno.append("id", anno.getMember("id"));
355 if (auto nla = anno.getMember("circt.nonlocal"))
356 newAnno.append("circt.nonlocal", nla);
357 newAnno.append(
358 "portID",
359 IntegerAttr::get(IntegerType::get(builder.getContext(), 64), i));
360
361 regAnnotations.push_back(builder.getDictionaryAttr(newAnno));
362 }
363 } else
364 regAnnotations.push_back(anno.getAttr());
365 }
366 op.setAnnotationsAttr(builder.getArrayAttr(regAnnotations));
367 }
368
369 /// Generate the logic for implementing the memory using Registers.
370 void generateMemory(MemOp memOp, FirMemory &firMem) {
371 ImplicitLocOpBuilder builder(memOp.getLoc(), memOp);
372 auto dataType = memOp.getDataType();
373
374 auto innerSym = memOp.getInnerSym();
375 SmallVector<Value> debugPorts;
376
377 RegOp regOfVec = {};
378 for (size_t index = 0, rend = memOp.getNumResults(); index < rend;
379 ++index) {
380 auto result = memOp.getResult(index);
381 if (type_isa<RefType>(result.getType())) {
382 debugPorts.push_back(result);
383 continue;
384 }
385 // Create a temporary wire to replace the memory port. This makes it
386 // simpler to delete the memOp.
387 auto wire = WireOp::create(
388 builder, result.getType(),
389 (memOp.getName() + "_" + memOp.getPortName(index).getValue()).str(),
390 memOp.getNameKind());
391 result.replaceAllUsesWith(wire.getResult());
392 result = wire.getResult();
393 // Create an access to all the common subfields.
394 auto adr = getAddr(builder, result);
395 auto enb = getEnable(builder, result);
396 auto clk = getClock(builder, result);
397 auto dta = getData(builder, result);
398 // IF the register is not yet created.
399 if (!regOfVec) {
400 // Create the register corresponding to the memory.
401 regOfVec =
402 RegOp::create(builder, FVectorType::get(dataType, firMem.depth),
403 clk, memOp.getNameAttr());
404
405 // Copy all the memory annotations.
406 if (!memOp.getAnnotationsAttr().empty())
407 scatterMemTapAnno(regOfVec, memOp.getAnnotationsAttr(), builder);
408 if (innerSym)
409 regOfVec.setInnerSymAttr(memOp.getInnerSymAttr());
410 }
411 auto portKind = memOp.getPortKind(index);
412 if (portKind == MemOp::PortKind::Read) {
413 generateRead(firMem, clk, adr, enb, dta, regOfVec.getResult(), builder);
414 } else if (portKind == MemOp::PortKind::Write) {
415 auto mask = getMask(builder, result);
416 generateWrite(firMem, clk, adr, enb, mask, dta, regOfVec.getResult(),
417 builder);
418 } else {
419 auto wmode = getWmode(builder, result);
420 auto wDta = getData(builder, result, true);
421 auto mask = getMask(builder, result);
422 generateReadWrite(firMem, clk, adr, enb, mask, wDta, dta, wmode,
423 regOfVec.getResult(), builder);
424 }
425 }
426 // If a valid register is created, then replace all the debug port users
427 // with a RefType of the register. The RefType is obtained by using a
428 // RefSend on the register.
429 if (regOfVec)
430 for (auto r : debugPorts)
431 r.replaceAllUsesWith(RefSendOp::create(builder, regOfVec.getResult()));
432 }
433};
434} // end anonymous namespace
This class provides a read-only projection over the MLIR attributes that represent a set of annotatio...
bool removeAnnotations(llvm::function_ref< bool(Annotation)> predicate)
Remove all annotations from this annotation set for which predicate returns true.
This class implements the same functionality as TypeSwitch except that it uses firrtl::type_dyn_cast ...
FIRRTLTypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
mlir::TypedValue< FIRRTLBaseType > FIRRTLBaseValue
constexpr const char * convertMemToRegOfVecAnnoClass
constexpr const char * memTapSourceClass
The InstanceGraph op interface, see InstanceGraphInterface.td for more details.
reg(value, clock, reset=None, reset_value=None, name=None, sym_name=None)
Definition seq.py:21