CIRCT 22.0.0git
Loading...
Searching...
No Matches
FlattenMemory.cpp
Go to the documentation of this file.
1//===- FlattenMemroy.cpp - Flatten Memory Pass ----------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the FlattenMemory pass.
10//
11//===----------------------------------------------------------------------===//
12
18#include "mlir/Pass/Pass.h"
19#include "llvm/Support/Debug.h"
20#include <numeric>
21
22#define DEBUG_TYPE "lower-memory"
23
24namespace circt {
25namespace firrtl {
26#define GEN_PASS_DEF_FLATTENMEMORY
27#include "circt/Dialect/FIRRTL/Passes.h.inc"
28} // namespace firrtl
29} // namespace circt
30
31using namespace circt;
32using namespace firrtl;
33
34namespace {
35struct FlattenMemoryPass
36 : public circt::firrtl::impl::FlattenMemoryBase<FlattenMemoryPass> {
37
38 /// Returns true if the the memory has annotations on a subfield of any of the
39 /// ports.
40 static bool hasSubAnno(MemOp op) {
41 for (size_t portIdx = 0, e = op.getNumResults(); portIdx < e; ++portIdx)
42 for (auto attr : op.getPortAnnotation(portIdx))
43 if (cast<DictionaryAttr>(attr).get("circt.fieldID"))
44 return true;
45 return false;
46 };
47
48 /// This pass converts data types of memories to a flat UInt, and inserts
49 /// appropriate bitcasts to access the data.
50 void runOnOperation() override {
51 LLVM_DEBUG(llvm::dbgs() << "\n Running lower memory on module:"
52 << getOperation().getName());
53 SmallVector<Operation *> opsToErase;
54 getOperation().getBodyBlock()->walk([&](MemOp memOp) {
55 LLVM_DEBUG(llvm::dbgs() << "\n Memory:" << memOp);
56
57 // Nothing to do if the memory already has UInt type
58 if (type_isa<UIntType>(memOp.getDataType()))
59 return;
60
61 // Cannot flatten a memory if it has debug ports, because debug port
62 // implies a memtap and we cannot transform the datatype for a memory that
63 // is tapped.
64 for (auto res : memOp.getResults())
65 if (isa<RefType>(res.getType()))
66 return;
67
68 // If subannotations present on aggregate fields, we cannot flatten the
69 // memory. It must be split into one memory per aggregate field.
70 // Do not overwrite the pass flag!
71 if (hasSubAnno(memOp))
72 return;
73
74 // The vector of leaf elements type after flattening the data. If any of
75 // the datatypes cannot be flattened, then we cannot flatten the memory.
76 SmallVector<FIRRTLBaseType> flatMemType;
77 if (!flattenType(memOp.getDataType(), flatMemType))
78 return;
79
80 // Calculate the width of the memory data type, and the width of
81 // each individual aggregate leaf elements.
82 size_t memFlatWidth = 0;
83 SmallVector<int32_t> memWidths;
84 for (auto f : flatMemType) {
85 LLVM_DEBUG(llvm::dbgs() << "\n field type:" << f);
86 auto w = f.getBitWidthOrSentinel();
87 memWidths.push_back(w);
88 memFlatWidth += w;
89 }
90 // If all the widths are zero, ignore the memory.
91 if (!memFlatWidth)
92 return;
93
94 // Calculate the mask granularity of this memory, which is how many bits
95 // of the data each mask bit controls. This is the greatest common
96 // denominator of the widths of the flattened data types.
97 auto maskGran = memWidths.front();
98 for (auto w : ArrayRef(memWidths).drop_front())
99 maskGran = std::gcd(maskGran, w);
100
101 // Total mask bitwidth after flattening.
102 uint32_t totalmaskWidths = 0;
103 // How many mask bits each field type requires.
104 SmallVector<unsigned> maskWidths;
105 for (auto w : memWidths) {
106 // How many mask bits required for each flattened field.
107 auto mWidth = w / maskGran;
108 maskWidths.push_back(mWidth);
109 totalmaskWidths += mWidth;
110 }
111
112 // Now create a new memory of type flattened data.
113 // ----------------------------------------------
114 SmallVector<Type, 8> ports;
115 SmallVector<Attribute, 8> portNames;
116
117 auto *context = memOp.getContext();
118 ImplicitLocOpBuilder builder(memOp.getLoc(), memOp);
119 // Create a new memory data type of unsigned and computed width.
120 auto flatType = UIntType::get(context, memFlatWidth);
121 for (auto port : memOp.getPorts()) {
122 ports.push_back(MemOp::getTypeForPort(memOp.getDepth(), flatType,
123 port.second, totalmaskWidths));
124 portNames.push_back(port.first);
125 }
126
127 // Create the new flattened memory.
128 auto flatMem = MemOp::create(
129 builder, ports, memOp.getReadLatency(), memOp.getWriteLatency(),
130 memOp.getDepth(), memOp.getRuw(), builder.getArrayAttr(portNames),
131 memOp.getNameAttr(), memOp.getNameKind(), memOp.getAnnotations(),
132 memOp.getPortAnnotations(), memOp.getInnerSymAttr(),
133 memOp.getInitAttr(), memOp.getPrefixAttr());
134
135 // Hook up the new memory to the wires the old memory was replaced with.
136 for (size_t index = 0, rend = memOp.getNumResults(); index < rend;
137 ++index) {
138
139 // Create a wire with the original type, and replace all uses of the old
140 // memory with the wire. We will be reconstructing the original type
141 // in the wire from the bitvector of the flattened memory.
142 auto result = memOp.getResult(index);
143 auto wire =
144 WireOp::create(
145 builder, result.getType(),
146 (memOp.getName() + "_" + memOp.getPortName(index)).str())
147 .getResult();
148 result.replaceAllUsesWith(wire);
149 result = wire;
150 auto newResult = flatMem.getResult(index);
151 auto rType = type_cast<BundleType>(result.getType());
152 for (size_t fieldIndex = 0, fend = rType.getNumElements();
153 fieldIndex != fend; ++fieldIndex) {
154 auto name = rType.getElement(fieldIndex).name;
155 auto oldField = SubfieldOp::create(builder, result, fieldIndex);
156 FIRRTLBaseValue newField =
157 SubfieldOp::create(builder, newResult, fieldIndex);
158 // data and mask depend on the memory type which was split. They can
159 // also go both directions, depending on the port direction.
160 if (!(name == "data" || name == "mask" || name == "wdata" ||
161 name == "wmask" || name == "rdata")) {
162 emitConnect(builder, newField, oldField);
163 continue;
164 }
165 Value realOldField = oldField;
166 if (rType.getElement(fieldIndex).isFlip) {
167 // Cast the memory read data from flat type to aggregate.
168 auto castField =
169 builder.createOrFold<BitCastOp>(oldField.getType(), newField);
170 // Write the aggregate read data.
171 emitConnect(builder, realOldField, castField);
172 } else {
173 // Cast the input aggregate write data to flat type.
174 auto newFieldType = newField.getType();
175 auto oldFieldBitWidth = getBitWidth(oldField.getType());
176 // Following condition is true, if a data field is 0 bits. Then
177 // newFieldType is of smaller bits than old.
178 if (getBitWidth(newFieldType) != *oldFieldBitWidth)
179 newFieldType = UIntType::get(context, *oldFieldBitWidth);
180 realOldField = BitCastOp::create(builder, newFieldType, oldField);
181 // Mask bits require special handling, since some of the mask bits
182 // need to be repeated, direct bitcasting wouldn't work. Depending
183 // on the mask granularity, some mask bits will be repeated.
184 if ((name == "mask" || name == "wmask") &&
185 (maskWidths.size() != totalmaskWidths)) {
186 Value catMasks;
187 for (const auto &m : llvm::enumerate(maskWidths)) {
188 // Get the mask bit.
189 auto mBit = builder.createOrFold<BitsPrimOp>(
190 realOldField, m.index(), m.index());
191 // Check how many times the mask bit needs to be prepend.
192 for (size_t repeat = 0; repeat < m.value(); repeat++)
193 if ((m.index() == 0 && repeat == 0) || !catMasks)
194 catMasks = mBit;
195 else
196 catMasks = builder.createOrFold<CatPrimOp>(
197 ValueRange{mBit, catMasks});
198 }
199 realOldField = catMasks;
200 }
201 // Now set the mask or write data.
202 // Ensure that the types match.
203 emitConnect(builder, newField,
204 builder.createOrFold<BitCastOp>(newField.getType(),
205 realOldField));
206 }
207 }
208 }
209 ++numFlattenedMems;
210 memOp.erase();
211 return;
212 });
213 }
214
215private:
216 // Convert a type into a flat list of fields. This is used to
217 // flatten the aggregate memory datatype. Recursively populate the results
218 // with each ground type field.
219 static bool flattenType(FIRRTLType type,
220 SmallVectorImpl<FIRRTLBaseType> &results) {
221 std::function<bool(FIRRTLType)> flatten = [&](FIRRTLType type) -> bool {
223 .Case<BundleType>([&](auto bundle) {
224 for (auto &elt : bundle)
225 if (!flatten(elt.type))
226 return false;
227 return true;
228 })
229 .Case<FVectorType>([&](auto vector) {
230 for (size_t i = 0, e = vector.getNumElements(); i != e; ++i)
231 if (!flatten(vector.getElementType()))
232 return false;
233 return true;
234 })
235 .Case<IntType>([&](IntType type) {
236 results.push_back(type);
237 return type.getWidth().has_value();
238 })
239 .Case<FEnumType>([&](FEnumType type) {
240 results.emplace_back(type);
241 return true;
242 })
243 .Default([&](auto) { return false; });
244 };
245 return flatten(type);
246 }
247
248 Value getSubWhatever(ImplicitLocOpBuilder *builder, Value val, size_t index) {
249 if (BundleType bundle = type_dyn_cast<BundleType>(val.getType()))
250 return SubfieldOp::create(*builder, val, index);
251 if (FVectorType fvector = type_dyn_cast<FVectorType>(val.getType()))
252 return SubindexOp::create(*builder, val, index);
253
254 llvm_unreachable("Unknown aggregate type");
255 return nullptr;
256 }
257};
258} // end anonymous namespace
static std::unique_ptr< Context > context
This class implements the same functionality as TypeSwitch except that it uses firrtl::type_dyn_cast ...
FIRRTLTypeSwitch< T, ResultT > & Case(CallableT &&caseFn)
Add a case on the given type.
This is the common base class between SIntType and UIntType.
std::optional< int32_t > getWidth() const
Return an optional containing the width, if the width is known (or empty if width is unknown).
mlir::TypedValue< FIRRTLBaseType > FIRRTLBaseValue
void emitConnect(OpBuilder &builder, Location loc, Value lhs, Value rhs)
Emit a connect between two values.
std::optional< int64_t > getBitWidth(FIRRTLBaseType type, bool ignoreFlip=false)
StringAttr getName(ArrayAttr names, size_t idx)
Return the name at the specified index of the ArrayAttr or null if it cannot be determined.
The InstanceGraph op interface, see InstanceGraphInterface.td for more details.