CIRCT 20.0.0git
Loading...
Searching...
No Matches
CFToHandshake.cpp
Go to the documentation of this file.
1//===- CFToHandshake.cpp - Convert standard MLIR into dataflow IR ---------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7//
8// This is the main Standard to Handshake Conversion Pass Implementation.
9//
10//===----------------------------------------------------------------------===//
11
18#include "mlir/Analysis/CFGLoopInfo.h"
19#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
20#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
21#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
22#include "mlir/Dialect/Affine/IR/AffineOps.h"
23#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
24#include "mlir/Dialect/Affine/Utils.h"
25#include "mlir/Dialect/Arith/IR/Arith.h"
26#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
27#include "mlir/Dialect/Func/IR/FuncOps.h"
28#include "mlir/Dialect/MemRef/IR/MemRef.h"
29#include "mlir/Dialect/SCF/IR/SCF.h"
30#include "mlir/IR/Builders.h"
31#include "mlir/IR/BuiltinOps.h"
32#include "mlir/IR/Diagnostics.h"
33#include "mlir/IR/Dominance.h"
34#include "mlir/IR/OpImplementation.h"
35#include "mlir/IR/PatternMatch.h"
36#include "mlir/IR/Types.h"
37#include "mlir/IR/Value.h"
38#include "mlir/Pass/Pass.h"
39#include "mlir/Support/LLVM.h"
40#include "mlir/Transforms/DialectConversion.h"
41#include "mlir/Transforms/Passes.h"
42#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/TypeSwitch.h"
44#include "llvm/Support/raw_ostream.h"
45
46#include <list>
47#include <map>
48
49namespace circt {
50#define GEN_PASS_DEF_CFTOHANDSHAKE
51#define GEN_PASS_DEF_HANDSHAKEREMOVEBLOCK
52#include "circt/Conversion/Passes.h.inc"
53} // namespace circt
54
55using namespace mlir;
56using namespace mlir::func;
57using namespace mlir::affine;
58using namespace circt;
59using namespace circt::handshake;
60using namespace std;
61
62// ============================================================================
63// Partial lowering infrastructure
64// ============================================================================
65
66namespace {
67template <typename TOp>
68class LowerOpTarget : public ConversionTarget {
69public:
70 explicit LowerOpTarget(MLIRContext &context) : ConversionTarget(context) {
71 loweredOps.clear();
72 addLegalDialect<HandshakeDialect>();
73 addLegalDialect<mlir::func::FuncDialect>();
74 addLegalDialect<mlir::arith::ArithDialect>();
75 addIllegalDialect<mlir::scf::SCFDialect>();
76 addIllegalDialect<AffineDialect>();
77
78 /// The root operation to be replaced is marked dynamically legal
79 /// based on the lowering status of the given operation, see
80 /// PartialLowerOp.
81 addDynamicallyLegalOp<TOp>([&](const auto &op) { return loweredOps[op]; });
82 }
83 DenseMap<Operation *, bool> loweredOps;
84};
85
86/// Default function for partial lowering of handshake::FuncOp. Lowering is
87/// achieved by a provided partial lowering function.
88///
89/// A partial lowering function may only replace a subset of the operations
90/// within the funcOp currently being lowered. However, the dialect conversion
91/// scheme requires the matched root operation to be replaced/updated/erased. It
92/// is the partial update function's responsibility to ensure this. The parital
93/// update function may only mutate the IR through the provided
94/// ConversionPatternRewriter, like any other ConversionPattern.
95/// Next, the function operation is expected to go
96/// from illegal to legalized, after matchAndRewrite returned true. To work
97/// around this, LowerFuncOpTarget::loweredFuncs is used to communicate between
98/// the target and the conversion, to indicate that the partial lowering was
99/// completed.
100template <typename TOp>
101struct PartialLowerOp : public ConversionPattern {
102 using PartialLoweringFunc =
103 std::function<LogicalResult(TOp, ConversionPatternRewriter &)>;
104
105public:
106 PartialLowerOp(LowerOpTarget<TOp> &target, MLIRContext *context,
107 LogicalResult &loweringResRef, const PartialLoweringFunc &fun)
108 : ConversionPattern(TOp::getOperationName(), 1, context), target(target),
109 loweringRes(loweringResRef), fun(fun) {}
110 using ConversionPattern::ConversionPattern;
111 LogicalResult
112 matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
113 ConversionPatternRewriter &rewriter) const override {
114 assert(isa<TOp>(op));
115 loweringRes = fun(dyn_cast<TOp>(op), rewriter);
116 target.loweredOps[op] = true;
117 return loweringRes;
118 };
119
120private:
121 LowerOpTarget<TOp> &target;
122 LogicalResult &loweringRes;
123 // NOTE: this is basically the rewrite function
124 PartialLoweringFunc fun;
125};
126} // namespace
127
128// Convenience function for running lowerToHandshake with a partial
129// handshake::FuncOp lowering function.
130template <typename TOp>
131static LogicalResult partiallyLowerOp(
132 const std::function<LogicalResult(TOp, ConversionPatternRewriter &)>
133 &loweringFunc,
134 MLIRContext *ctx, TOp op) {
135
136 RewritePatternSet patterns(ctx);
137 auto target = LowerOpTarget<TOp>(*ctx);
138 LogicalResult partialLoweringSuccessfull = success();
139 patterns.add<PartialLowerOp<TOp>>(target, ctx, partialLoweringSuccessfull,
140 loweringFunc);
141 return success(
142 applyPartialConversion(op, target, std::move(patterns)).succeeded() &&
143 partialLoweringSuccessfull.succeeded());
144}
145
146class LowerRegionTarget : public ConversionTarget {
147public:
148 explicit LowerRegionTarget(MLIRContext &context, Region &region)
149 : ConversionTarget(context), region(region) {
150 // The root operation is marked dynamically legal to ensure
151 // the pattern on its region is only applied once.
152 markUnknownOpDynamicallyLegal([&](Operation *op) {
153 if (op != region.getParentOp())
154 return true;
155 return opLowered;
156 });
157 }
158 bool opLowered = false;
159 Region &region;
160};
161
162/// Allows to partially lower a region by matching on the parent operation to
163/// then call the provided partial lowering function with the region and the
164/// rewriter.
165///
166/// The interplay with the target is similar to PartialLowerOp
167struct PartialLowerRegion : public ConversionPattern {
169 std::function<LogicalResult(Region &, ConversionPatternRewriter &)>;
170
171public:
173 LogicalResult &loweringResRef,
175 : ConversionPattern(target.region.getParentOp()->getName().getStringRef(),
176 1, context),
177 target(target), loweringRes(loweringResRef), fun(fun) {}
178 using ConversionPattern::ConversionPattern;
179 LogicalResult
180 matchAndRewrite(Operation *op, ArrayRef<Value> /*operands*/,
181 ConversionPatternRewriter &rewriter) const override {
182 rewriter.modifyOpInPlace(
183 op, [&] { loweringRes = fun(target.region, rewriter); });
184
185 target.opLowered = true;
186 return loweringRes;
187 };
188
189private:
191 LogicalResult &loweringRes;
193};
194
195LogicalResult
196handshake::partiallyLowerRegion(const RegionLoweringFunc &loweringFunc,
197 MLIRContext *ctx, Region &r) {
198
199 Operation *op = r.getParentOp();
200 RewritePatternSet patterns(ctx);
201 auto target = LowerRegionTarget(*ctx, r);
202 LogicalResult partialLoweringSuccessfull = success();
203 patterns.add<PartialLowerRegion>(target, ctx, partialLoweringSuccessfull,
204 loweringFunc);
205 return success(
206 applyPartialConversion(op, target, std::move(patterns)).succeeded() &&
207 partialLoweringSuccessfull.succeeded());
208}
209
210// ============================================================================
211// Start of lowering passes
212// ============================================================================
213
215 auto it = blockEntryControlMap.find(block);
216 assert(it != blockEntryControlMap.end() &&
217 "No block entry control value registerred for this block!");
218 return it->second;
219}
220
221void HandshakeLowering::setBlockEntryControl(Block *block, Value v) {
222 blockEntryControlMap[block] = v;
223}
224
226 Block *entryBlock = &r.front();
227 auto &entryBlockOps = entryBlock->getOperations();
228
229 // Move all operations to entry block and erase other blocks.
230 for (Block &block : llvm::make_early_inc_range(llvm::drop_begin(r, 1))) {
231 entryBlockOps.splice(entryBlockOps.end(), block.getOperations());
232
233 block.clear();
234 block.dropAllDefinedValueUses();
235 for (size_t i = 0; i < block.getNumArguments(); i++) {
236 block.eraseArgument(i);
237 }
238 block.erase();
239 }
240
241 // Remove any control flow operations, and move the non-control flow
242 // terminator op to the end of the entry block.
243 for (Operation &terminatorLike : llvm::make_early_inc_range(*entryBlock)) {
244 if (!terminatorLike.hasTrait<OpTrait::IsTerminator>())
245 continue;
246
247 if (isa<mlir::cf::CondBranchOp, mlir::cf::BranchOp>(terminatorLike)) {
248 terminatorLike.erase();
249 continue;
250 }
251
252 // Else, assume that this is a return-like terminator op.
253 terminatorLike.moveBefore(entryBlock, entryBlock->end());
254 }
255}
256
257LogicalResult
258HandshakeLowering::runSSAMaximization(ConversionPatternRewriter &rewriter,
259 Value entryCtrl) {
260 return maximizeSSA(entryCtrl, rewriter);
261}
262
264 if (funcOp.isExternal())
265 return; // nothing to do, external funcOp.
266
267 removeBasicBlocks(funcOp.getBody());
268}
269
270static LogicalResult isValidMemrefType(Location loc, mlir::MemRefType type) {
271 if (type.getNumDynamicDims() != 0 || type.getShape().size() != 1)
272 return emitError(loc) << "memref's must be both statically sized and "
273 "unidimensional.";
274 return success();
275}
276
277static unsigned getBlockPredecessorCount(Block *block) {
278 // Returns number of block predecessors
279 auto predecessors = block->getPredecessors();
280 return std::distance(predecessors.begin(), predecessors.end());
281}
282
283// Insert appropriate type of Merge CMerge for control-only path,
284// Merge for single-successor blocks, Mux otherwise
286HandshakeLowering::insertMerge(Block *block, Value val,
287 BackedgeBuilder &edgeBuilder,
288 ConversionPatternRewriter &rewriter) {
289 unsigned numPredecessors = getBlockPredecessorCount(block);
290 auto insertLoc = block->front().getLoc();
291 SmallVector<Backedge> dataEdges;
292 SmallVector<Value> operands;
293
294 // Every block (except the entry block) needs to feed it's entry control into
295 // a control merge
296 if (val == getBlockEntryControl(block)) {
297
298 Operation *mergeOp;
299 if (block == &r.front()) {
300 // For consistency within the entry block, replace the latter's entry
301 // control with the output of a MergeOp that takes the control-only
302 // network's start point as input. This makes it so that only the
303 // MergeOp's output is used as a control within the entry block, instead
304 // of a combination of the MergeOp's output and the function/block control
305 // argument. Taking this step out should have no impact on functionality
306 // but would make the resulting IR less "regular"
307 operands.push_back(val);
308 mergeOp = rewriter.create<handshake::MergeOp>(insertLoc, operands);
309 } else {
310 for (unsigned i = 0; i < numPredecessors; i++) {
311 auto edge = edgeBuilder.get(rewriter.getNoneType());
312 dataEdges.push_back(edge);
313 operands.push_back(Value(edge));
314 }
315 mergeOp = rewriter.create<handshake::ControlMergeOp>(insertLoc, operands);
316 }
317 setBlockEntryControl(block, mergeOp->getResult(0));
318 return MergeOpInfo{mergeOp, val, dataEdges};
319 }
320
321 // Every live-in value to a block is passed through a merge-like operation,
322 // even when it's not required for circuit correctness (useless merge-like
323 // operations are removed down the line during handshake canonicalization)
324
325 // Insert "dummy" MergeOp's for blocks with less than two predecessors
326 if (numPredecessors <= 1) {
327 if (numPredecessors == 0) {
328 // All of the entry block's block arguments get passed through a dummy
329 // MergeOp. There is no need for a backedge here as the unique operand can
330 // be resolved immediately
331 operands.push_back(val);
332 } else {
333 // The value incoming from the single block predecessor will be resolved
334 // later during merge reconnection
335 auto edge = edgeBuilder.get(val.getType());
336 dataEdges.push_back(edge);
337 operands.push_back(Value(edge));
338 }
339 auto merge = rewriter.create<handshake::MergeOp>(insertLoc, operands);
340 return MergeOpInfo{merge, val, dataEdges};
341 }
342
343 // Create a backedge for the index operand, and another one for each data
344 // operand. The index operand will eventually resolve to the current block's
345 // control merge index output, while data operands will resolve to their
346 // respective values from each block predecessor
347 Backedge indexEdge = edgeBuilder.get(rewriter.getIndexType());
348 for (unsigned i = 0; i < numPredecessors; i++) {
349 auto edge = edgeBuilder.get(val.getType());
350 dataEdges.push_back(edge);
351 operands.push_back(Value(edge));
352 }
353 auto mux =
354 rewriter.create<handshake::MuxOp>(insertLoc, Value(indexEdge), operands);
355 return MergeOpInfo{mux, val, dataEdges, indexEdge};
356}
357
360 BackedgeBuilder &edgeBuilder,
361 ConversionPatternRewriter &rewriter) {
362 HandshakeLowering::BlockOps blockMerges;
363 for (Block &block : r) {
364 rewriter.setInsertionPointToStart(&block);
365
366 // All of the block's live-ins are passed explictly through block arguments
367 // thanks to prior SSA maximization
368 for (auto &arg : block.getArguments()) {
369 // No merges on memref block arguments; these are handled separately
370 if (isa<mlir::MemRefType>(arg.getType()))
371 continue;
372
373 auto mergeInfo = insertMerge(&block, arg, edgeBuilder, rewriter);
374 blockMerges[&block].push_back(mergeInfo);
375 mergePairs[arg] = mergeInfo.op->getResult(0);
376 }
377 }
378 return blockMerges;
379}
380
381// Get value from predBlock which will be set as operand of op (merge)
383 Block *predBlock) {
384 // The input value to the merge operations
385 Value srcVal = mergeInfo.val;
386 // The block the merge operation belongs to
387 Block *block = mergeInfo.op->getBlock();
388
389 // The block terminator is either a cf-level branch or cf-level conditional
390 // branch. In either case, identify the value passed to the block using its
391 // index in the list of block arguments
392 unsigned index = cast<BlockArgument>(srcVal).getArgNumber();
393 Operation *termOp = predBlock->getTerminator();
394 if (mlir::cf::CondBranchOp br = dyn_cast<mlir::cf::CondBranchOp>(termOp)) {
395 // Block should be one of the two destinations of the conditional branch
396 if (block == br.getTrueDest())
397 return br.getTrueOperand(index);
398 assert(block == br.getFalseDest());
399 return br.getFalseOperand(index);
400 }
401 if (isa<mlir::cf::BranchOp>(termOp))
402 return termOp->getOperand(index);
403 return nullptr;
404}
405
406static void removeBlockOperands(Region &f) {
407 // Remove all block arguments, they are no longer used
408 // eraseArguments also removes corresponding branch operands
409 for (Block &block : f) {
410 if (!block.isEntryBlock()) {
411 int x = block.getNumArguments() - 1;
412 for (int i = x; i >= 0; --i)
413 block.eraseArgument(i);
414 }
415 }
416}
417
418/// Returns the first occurance of an operation of type TOp, else, returns
419/// null op.
420template <typename TOp>
421static Operation *getFirstOp(Block *block) {
422 auto ops = block->getOps<TOp>();
423 if (ops.empty())
424 return nullptr;
425 return *ops.begin();
426}
427
428static Operation *getControlMerge(Block *block) {
429 return getFirstOp<ControlMergeOp>(block);
430}
431
432static ConditionalBranchOp getControlCondBranch(Block *block) {
433 for (auto cbranch : block->getOps<handshake::ConditionalBranchOp>()) {
434 if (cbranch.isControl())
435 return cbranch;
436 }
437 return nullptr;
438}
439
440static void reconnectMergeOps(Region &r,
441 HandshakeLowering::BlockOps blockMerges,
442 HandshakeLowering::ValueMap &mergePairs) {
443 // At this point all merge-like operations have backedges as operands.
444 // We here replace all backedge values with appropriate value from
445 // predecessor block. The predecessor can either be a merge, the original
446 // defining value, or a branch operand.
447
448 for (Block &block : r) {
449 for (auto &mergeInfo : blockMerges[&block]) {
450 int operandIdx = 0;
451 // Set appropriate operand from each predecessor block
452 for (auto *predBlock : block.getPredecessors()) {
453 Value mgOperand = getMergeOperand(mergeInfo, predBlock);
454 assert(mgOperand != nullptr);
455 if (!mgOperand.getDefiningOp()) {
456 assert(mergePairs.count(mgOperand));
457 mgOperand = mergePairs[mgOperand];
458 }
459 mergeInfo.dataEdges[operandIdx].setValue(mgOperand);
460 operandIdx++;
461 }
462
463 // Reconnect all operands originating from livein defining value through
464 // corresponding merge of that block
465 for (Operation &opp : block)
466 if (!isa<MergeLikeOpInterface>(opp))
467 opp.replaceUsesOfWith(mergeInfo.val, mergeInfo.op->getResult(0));
468 }
469 }
470
471 // Connect select operand of muxes to control merge's index result in all
472 // blocks with more than one predecessor
473 for (Block &block : r) {
474 if (getBlockPredecessorCount(&block) > 1) {
475 Operation *cntrlMg = getControlMerge(&block);
476 assert(cntrlMg != nullptr);
477
478 for (auto &mergeInfo : blockMerges[&block]) {
479 if (mergeInfo.op != cntrlMg) {
480 // If the block has multiple predecessors, merge-like operation that
481 // are not the block's control merge must have an index operand (at
482 // this point, an index backedge)
483 assert(mergeInfo.indexEdge.has_value());
484 (*mergeInfo.indexEdge).setValue(cntrlMg->getResult(1));
485 }
486 }
487 }
488 }
489
491}
492
493static bool isAllocOp(Operation *op) {
494 return isa<memref::AllocOp, memref::AllocaOp>(op);
495}
496
497LogicalResult
498HandshakeLowering::addMergeOps(ConversionPatternRewriter &rewriter) {
499
500 // Stores mapping from each value that pass through a merge operation to the
501 // first result of that merge operation
502 ValueMap mergePairs;
503
504 // Create backedge builder to manage operands of merge operations between
505 // insertion and reconnection
506 BackedgeBuilder edgeBuilder{rewriter, r.front().front().getLoc()};
507
508 // Insert merge operations (with backedges instead of actual operands)
509 BlockOps mergeOps = insertMergeOps(mergePairs, edgeBuilder, rewriter);
510
511 // Reconnect merge operations with values incoming from predecessor blocks
512 // and resolve all backedges that were created during merge insertion
513 reconnectMergeOps(r, mergeOps, mergePairs);
514 return success();
515}
516
517static bool isLiveOut(Value val) {
518 // Identifies liveout values after adding Merges
519 for (auto &u : val.getUses())
520 // Result is liveout if used by some Merge block
521 if (isa<MergeLikeOpInterface>(u.getOwner()))
522 return true;
523 return false;
524}
525
526// A value can have multiple branches in a single successor block
527// (for instance, there can be an SSA phi and a merge that we insert)
528// This function determines the number of branches to insert based on the
529// value uses in successor blocks
530static int getBranchCount(Value val, Block *block) {
531 int uses = 0;
532 for (int i = 0, e = block->getNumSuccessors(); i < e; ++i) {
533 int curr = 0;
534 Block *succ = block->getSuccessor(i);
535 for (auto &u : val.getUses()) {
536 if (u.getOwner()->getBlock() == succ)
537 curr++;
538 }
539 uses = (curr > uses) ? curr : uses;
540 }
541 return uses;
542}
543
544namespace {
545
546/// This class inserts a reorder prevention mechanism for blocks with multiple
547/// successors. Such a mechanism is required to guarantee correct execution in a
548/// multi-threaded usage of the circuits.
549///
550/// The order of the results matches the order of the traversals of the
551/// divergence point. A FIFO buffer stores the condition of the conditional
552/// branch. The buffer feeds a mux that guarantees the correct out-order.
553class FeedForwardNetworkRewriter {
554public:
555 FeedForwardNetworkRewriter(HandshakeLowering &hl,
556 ConversionPatternRewriter &rewriter)
557 : hl(hl), rewriter(rewriter), postDomInfo(hl.getRegion().getParentOp()),
558 domInfo(hl.getRegion().getParentOp()),
559 loopInfo(domInfo.getDomTree(&hl.getRegion())) {}
560 LogicalResult apply();
561
562private:
564 ConversionPatternRewriter &rewriter;
565 PostDominanceInfo postDomInfo;
566 DominanceInfo domInfo;
567 CFGLoopInfo loopInfo;
568
569 using BlockPair = std::pair<Block *, Block *>;
570 using BlockPairs = SmallVector<BlockPair>;
571 LogicalResult findBlockPairs(BlockPairs &blockPairs);
572
573 BufferOp buildSplitNetwork(Block *splitBlock,
574 handshake::ConditionalBranchOp &ctrlBr);
575 LogicalResult buildMergeNetwork(Block *mergeBlock, BufferOp buf,
576 handshake::ConditionalBranchOp &ctrlBr);
577
578 // Determines if the cmerge inpus match the cond_br output order.
579 bool requiresOperandFlip(ControlMergeOp &ctrlMerge,
580 handshake::ConditionalBranchOp &ctrlBr);
581 bool formsIrreducibleCF(Block *splitBlock, Block *mergeBlock);
582};
583} // namespace
584
585LogicalResult
586HandshakeLowering::feedForwardRewriting(ConversionPatternRewriter &rewriter) {
587 // Nothing to do on a single block region.
588 if (this->getRegion().hasOneBlock())
589 return success();
590 return FeedForwardNetworkRewriter(*this, rewriter).apply();
591}
592
593[[maybe_unused]] static bool loopsHaveSingleExit(CFGLoopInfo &loopInfo) {
594 for (CFGLoop *loop : loopInfo.getTopLevelLoops())
595 if (!loop->getExitBlock())
596 return false;
597 return true;
598}
599
600bool FeedForwardNetworkRewriter::formsIrreducibleCF(Block *splitBlock,
601 Block *mergeBlock) {
602 CFGLoop *loop = loopInfo.getLoopFor(mergeBlock);
603 for (auto *mergePred : mergeBlock->getPredecessors()) {
604 // Skip loop predecessors
605 if (loop && loop->contains(mergePred))
606 continue;
607
608 // A DAG-CFG is irreducible, iff a merge block has a predecessor that can be
609 // reached from both successors of a split node, e.g., neither is a
610 // dominator.
611 // => Their control flow can merge in other places, which makes this
612 // irreducible.
613 if (llvm::none_of(splitBlock->getSuccessors(), [&](Block *splitSucc) {
614 if (splitSucc == mergeBlock || mergePred == splitBlock)
615 return true;
616 return domInfo.dominates(splitSucc, mergePred);
617 }))
618 return true;
619 }
620 return false;
621}
622
623static Operation *findBranchToBlock(Block *block) {
624 Block *pred = *block->getPredecessors().begin();
625 return pred->getTerminator();
626}
627
628LogicalResult
629FeedForwardNetworkRewriter::findBlockPairs(BlockPairs &blockPairs) {
630 // assumes that merge block insertion happended beforehand
631 // Thus, for each split block, there exists one merge block which is the post
632 // dominator of the child nodes.
633 Region &r = hl.getRegion();
634 Operation *parentOp = r.getParentOp();
635
636 // Assumes that each loop has only one exit block. Such an error should
637 // already be reported by the loop rewriting.
638 assert(loopsHaveSingleExit(loopInfo) &&
639 "expected loop to only have one exit block.");
640
641 for (Block &b : r) {
642 if (b.getNumSuccessors() < 2)
643 continue;
644
645 // Loop headers cannot be merge blocks.
646 if (loopInfo.getLoopFor(&b))
647 continue;
648
649 assert(b.getNumSuccessors() == 2);
650 Block *succ0 = b.getSuccessor(0);
651 Block *succ1 = b.getSuccessor(1);
652
653 if (succ0 == succ1)
654 continue;
655
656 Block *mergeBlock = postDomInfo.findNearestCommonDominator(succ0, succ1);
657
658 // Precondition checks
659 if (formsIrreducibleCF(&b, mergeBlock)) {
660 return parentOp->emitError("expected only reducible control flow.")
661 .attachNote(findBranchToBlock(mergeBlock)->getLoc())
662 << "This branch is involved in the irreducible control flow";
663 }
664
665 unsigned nonLoopPreds = 0;
666 CFGLoop *loop = loopInfo.getLoopFor(mergeBlock);
667 for (auto *pred : mergeBlock->getPredecessors()) {
668 if (loop && loop->contains(pred))
669 continue;
670 nonLoopPreds++;
671 }
672 if (nonLoopPreds > 2)
673 return parentOp
674 ->emitError("expected a merge block to have two predecessors. "
675 "Did you run the merge block insertion pass?")
676 .attachNote(findBranchToBlock(mergeBlock)->getLoc())
677 << "This branch jumps to the illegal block";
678
679 blockPairs.emplace_back(&b, mergeBlock);
680 }
681
682 return success();
683}
684
685LogicalResult FeedForwardNetworkRewriter::apply() {
686 BlockPairs pairs;
687
688 if (failed(findBlockPairs(pairs)))
689 return failure();
690
691 for (auto [splitBlock, mergeBlock] : pairs) {
692 handshake::ConditionalBranchOp ctrlBr;
693 BufferOp buffer = buildSplitNetwork(splitBlock, ctrlBr);
694 if (failed(buildMergeNetwork(mergeBlock, buffer, ctrlBr)))
695 return failure();
696 }
697
698 return success();
699}
700
701BufferOp FeedForwardNetworkRewriter::buildSplitNetwork(
702 Block *splitBlock, handshake::ConditionalBranchOp &ctrlBr) {
703 SmallVector<handshake::ConditionalBranchOp> branches;
704 llvm::copy(splitBlock->getOps<handshake::ConditionalBranchOp>(),
705 std::back_inserter(branches));
706
707 auto *findRes = llvm::find_if(branches, [](auto br) {
708 return llvm::isa<NoneType>(br.getDataOperand().getType());
709 });
710
711 assert(findRes && "expected one branch for the ctrl signal");
712 ctrlBr = *findRes;
713
714 Value cond = ctrlBr.getConditionOperand();
715 assert(llvm::all_of(branches, [&](auto branch) {
716 return branch.getConditionOperand() == cond;
717 }));
718
719 Location loc = cond.getLoc();
720 rewriter.setInsertionPointAfterValue(cond);
721
722 // The buffer size defines the number of threads that can be concurently
723 // traversing the sub-CFG starting at the splitBlock.
724 size_t bufferSize = 2;
725 // TODO how to size these?
726 // Longest path in a CFG-DAG would be O(#blocks)
727
728 return rewriter.create<handshake::BufferOp>(loc, cond, bufferSize,
729 BufferTypeEnum::fifo);
730}
731
732LogicalResult FeedForwardNetworkRewriter::buildMergeNetwork(
733 Block *mergeBlock, BufferOp buf, handshake::ConditionalBranchOp &ctrlBr) {
734 // Replace control merge with mux
735 auto ctrlMerges = mergeBlock->getOps<handshake::ControlMergeOp>();
736 assert(std::distance(ctrlMerges.begin(), ctrlMerges.end()) == 1);
737
738 handshake::ControlMergeOp ctrlMerge = *ctrlMerges.begin();
739 // This input might contain irreducible loops that we cannot handle.
740 if (ctrlMerge.getNumOperands() != 2)
741 return ctrlMerge.emitError("expected cmerges to have two operands");
742 rewriter.setInsertionPointAfter(ctrlMerge);
743 Location loc = ctrlMerge->getLoc();
744
745 // The newly inserted mux has to select the results from the correct operand.
746 // As there is no guarantee on the order of cmerge inputs, the correct order
747 // has to be determined first.
748 bool requiresFlip = requiresOperandFlip(ctrlMerge, ctrlBr);
749 SmallVector<Value> muxOperands;
750 if (requiresFlip)
751 muxOperands = llvm::to_vector(llvm::reverse(ctrlMerge.getOperands()));
752 else
753 muxOperands = llvm::to_vector(ctrlMerge.getOperands());
754
755 Value newCtrl = rewriter.create<handshake::MuxOp>(loc, buf, muxOperands);
756
757 Value cond = buf.getResult();
758 if (requiresFlip) {
759 // As the mux operand order is the flipped cmerge input order, the index
760 // which replaces the output of the cmerge has to be flipped/negated as
761 // well.
762 cond = rewriter.create<arith::XOrIOp>(
763 loc, cond.getType(), cond,
764 rewriter.create<arith::ConstantOp>(
765 loc, rewriter.getIntegerAttr(rewriter.getI1Type(), 1)));
766 }
767
768 // Require a cast to index to stick to the type of the mux input.
769 Value condAsIndex =
770 rewriter.create<arith::IndexCastOp>(loc, rewriter.getIndexType(), cond);
771
772 hl.setBlockEntryControl(mergeBlock, newCtrl);
773
774 // Replace with new ctrl value from mux and the index
775 rewriter.replaceOp(ctrlMerge, {newCtrl, condAsIndex});
776 return success();
777}
778
779bool FeedForwardNetworkRewriter::requiresOperandFlip(
780 ControlMergeOp &ctrlMerge, handshake::ConditionalBranchOp &ctrlBr) {
781 assert(ctrlMerge.getNumOperands() == 2 &&
782 "Loops should already have been handled");
783
784 Value fstOperand = ctrlMerge.getOperand(0);
785
786 assert(ctrlBr.getTrueResult().hasOneUse() &&
787 "expected the result of a branch to only have one user");
788 Operation *trueUser = *ctrlBr.getTrueResult().user_begin();
789 if (trueUser == ctrlBr)
790 // The cmerge directly consumes the cond_br output.
791 return ctrlBr.getTrueResult() == fstOperand;
792
793 // The cmerge is consumed in an intermediate block. Find out if this block is
794 // a predecessor of the "true" successor of the cmerge.
795 Block *trueBlock = trueUser->getBlock();
796 return domInfo.dominates(trueBlock, fstOperand.getDefiningOp()->getBlock());
797}
798
799namespace {
800// This function creates the loop 'continue' and 'exit' network around backedges
801// in the CFG.
802// We don't have a standard dialect based LoopInfo utility in MLIR
803// (which could probably deduce most of the information that we need for this
804// transformation), so we roll our own loop-detection analysis. This is
805// simplified by the need to only detect outermost loops. Inner loops are
806// not included in the loop network (since we only care about restricting
807// different function invocations from activating a loop, not prevent loop
808// pipelining within a single function invocation).
809class LoopNetworkRewriter {
810public:
811 LoopNetworkRewriter(HandshakeLowering &hl) : hl(hl) {}
812
813 LogicalResult processRegion(Region &r, ConversionPatternRewriter &rewriter);
814
815private:
816 // An exit pair is a pair of <in loop block, outside loop block> that
817 // indicates where control leaves a loop.
818 using ExitPair = std::pair<Block *, Block *>;
819 LogicalResult processOuterLoop(Location loc, CFGLoop *loop);
820
821 // Builds the loop continue network in between the loop header and its loop
822 // latch. The loop continuation network will replace the existing control
823 // merge in the loop header with a mux + loop priming register.
824 // The 'loopPrimingInput' is a backedge that will later be assigned by
825 // 'buildExitNetwork'. The value is to be used as the input to the loop
826 // priming buffer.
827 // Returns a reference to the loop priming register.
828 BufferOp buildContinueNetwork(Block *loopHeader, Block *loopLatch,
829 Backedge &loopPrimingInput);
830
831 // Builds the loop exit network. This detects the conditional operands used in
832 // each of the exit blocks, matches their parity with the convention used to
833 // prime the loop register, and assigns it to the loop priming register input.
834 void buildExitNetwork(Block *loopHeader,
835 const llvm::SmallSet<ExitPair, 2> &exitPairs,
836 BufferOp loopPrimingRegister,
837 Backedge &loopPrimingInput);
838
839private:
840 ConversionPatternRewriter *rewriter = nullptr;
842};
843} // namespace
844
845LogicalResult
846HandshakeLowering::loopNetworkRewriting(ConversionPatternRewriter &rewriter) {
847 return LoopNetworkRewriter(*this).processRegion(r, rewriter);
848}
849
850LogicalResult
851LoopNetworkRewriter::processRegion(Region &r,
852 ConversionPatternRewriter &rewriter) {
853 // Nothing to do on a single block region.
854 if (r.hasOneBlock())
855 return success();
856 this->rewriter = &rewriter;
857
858 Operation *op = r.getParentOp();
859
860 DominanceInfo domInfo(op);
861 CFGLoopInfo loopInfo(domInfo.getDomTree(&r));
862
863 for (CFGLoop *loop : loopInfo.getTopLevelLoops()) {
864 if (!loop->getLoopLatch())
865 return emitError(op->getLoc()) << "Multiple loop latches detected "
866 "(backedges from within the loop "
867 "to the loop header). Loop task "
868 "pipelining is only supported for "
869 "loops with unified loop latches.";
870
871 // This is the start of an outer loop - go process!
872 if (failed(processOuterLoop(op->getLoc(), loop)))
873 return failure();
874 }
875
876 return success();
877}
878
879// Returns the operand of the 'mux' operation which originated from 'block'.
880static Value getOperandFromBlock(MuxOp mux, Block *block) {
881 auto inValueIt = llvm::find_if(mux.getDataOperands(), [&](Value operand) {
882 return block == operand.getParentBlock();
883 });
884 assert(
885 inValueIt != mux.getDataOperands().end() &&
886 "Expected mux to have an operand originating from the requested block.");
887 return *inValueIt;
888}
889
890// Returns a list of operands from 'mux' which corresponds to the inputs of the
891// 'cmerge' operation. The results are sorted such that the i'th cmerge operand
892// and the i'th sorted operand originate from the same block.
893static std::vector<Value> getSortedInputs(ControlMergeOp cmerge, MuxOp mux) {
894 std::vector<Value> sortedOperands;
895 for (auto in : cmerge.getOperands()) {
896 auto *srcBlock = in.getParentBlock();
897 sortedOperands.push_back(getOperandFromBlock(mux, srcBlock));
898 }
899
900 // Sanity check: ensure that operands are unique
901 for (unsigned i = 0; i < sortedOperands.size(); ++i) {
902 for (unsigned j = 0; j < sortedOperands.size(); ++j) {
903 if (i == j)
904 continue;
905 assert(sortedOperands[i] != sortedOperands[j] &&
906 "Cannot have an identical operand from two different blocks!");
907 }
908 }
909
910 return sortedOperands;
911}
912
913BufferOp LoopNetworkRewriter::buildContinueNetwork(Block *loopHeader,
914 Block *loopLatch,
915 Backedge &loopPrimingInput) {
916 // Gather the muxes to replace before modifying block internals; it's been
917 // found that if this is not done, we have determinism issues wrt. generating
918 // the same order of replaced muxes on repeated runs of an identical
919 // conversion.
920 llvm::SmallVector<MuxOp> muxesToReplace;
921 llvm::copy(loopHeader->getOps<MuxOp>(), std::back_inserter(muxesToReplace));
922
923 // Fetch the control merge of the block; it is assumed that, at this point of
924 // lowering, no other form of control can be used for the loop header block
925 // than a control merge.
926 auto *cmerge = getControlMerge(loopHeader);
927 assert(hl.getBlockEntryControl(loopHeader) == cmerge->getResult(0) &&
928 "Expected control merge to be the control component of a loop header");
929 auto loc = cmerge->getLoc();
930
931 // sanity check: cmerge should have >1 input to actually be a loop
932 assert(cmerge->getNumOperands() > 1 && "This cannot be a loop header");
933
934 // Partition the control merge inputs into those originating from backedges,
935 // and those originating elsewhere.
936 SmallVector<Value> externalCtrls, loopCtrls;
937 for (auto cval : cmerge->getOperands()) {
938 if (cval.getParentBlock() == loopLatch)
939 loopCtrls.push_back(cval);
940 else
941 externalCtrls.push_back(cval);
942 }
943 assert(loopCtrls.size() == 1 &&
944 "Expected a single loop control value to match the single loop latch");
945 Value loopCtrl = loopCtrls.front();
946
947 // Merge all of the controls in each partition
948 rewriter->setInsertionPointToStart(loopHeader);
949 auto externalCtrlMerge = rewriter->create<ControlMergeOp>(loc, externalCtrls);
950
951 // Create loop mux and the loop priming register. The loop mux will on select
952 // "0" select external control, and internal control at "1". This convention
953 // must be followed by the loop exit network.
954 auto primingRegister =
955 rewriter->create<BufferOp>(loc, loopPrimingInput, 1, BufferTypeEnum::seq);
956 // Initialize the priming register to path 0.
957 primingRegister->setAttr("initValues", rewriter->getI64ArrayAttr({0}));
958
959 // The loop control mux will deterministically select between control entering
960 // the loop from any external block or the single loop backedge.
961 auto loopCtrlMux = rewriter->create<MuxOp>(
962 loc, primingRegister.getResult(),
963 llvm::SmallVector<Value>{externalCtrlMerge.getResult(), loopCtrl});
964
965 // Replace the existing control merge 'result' output with the loop control
966 // mux.
967 cmerge->getResult(0).replaceAllUsesWith(loopCtrlMux.getResult());
968
969 // Register the new block entry control value
970 hl.setBlockEntryControl(loopHeader, loopCtrlMux.getResult());
971
972 // Next, we need to consider how to replace the control merge 'index' output,
973 // used to drive input selection to the block.
974
975 // Inputs to the loop header will be sourced from muxes with inputs from both
976 // the loop latch as well as external blocks. Iterate through these and sort
977 // based on the input ordering to the external/internal control merge.
978 // We do this by maintaining a mapping between the external and loop data
979 // inputs for each data mux in the design. The key of these maps is the
980 // original mux (that is to be replaced).
981 DenseMap<MuxOp, std::vector<Value>> externalDataInputs;
982 DenseMap<MuxOp, Value> loopDataInputs;
983 for (auto muxOp : muxesToReplace) {
984 if (muxOp == loopCtrlMux)
985 continue;
986
987 externalDataInputs[muxOp] = getSortedInputs(externalCtrlMerge, muxOp);
988 loopDataInputs[muxOp] = getOperandFromBlock(muxOp, loopLatch);
989 assert(/*loop latch input*/ 1 + externalDataInputs[muxOp].size() ==
990 muxOp.getDataOperands().size() &&
991 "Expected all mux operands to be partitioned between loop and "
992 "external data inputs");
993 }
994
995 // With this, we now replace each of the data input muxes in the loop header.
996 // We instantiate a single mux driven by the external control merge.
997 // This, as well as the corresponding data input coming from within the single
998 // loop latch, will then be selected between by a 3rd mux, based on the
999 // priming register.
1000 for (MuxOp mux : muxesToReplace) {
1001 auto externalDataMux = rewriter->create<MuxOp>(
1002 loc, externalCtrlMerge.getIndex(), externalDataInputs[mux]);
1003
1004 rewriter->replaceOp(
1005 mux, rewriter
1006 ->create<MuxOp>(loc, primingRegister,
1007 llvm::SmallVector<Value>{externalDataMux,
1008 loopDataInputs[mux]})
1009 .getResult());
1010 }
1011
1012 // Now all values defined by the original cmerge should have been replaced,
1013 // and it may be erased.
1014 rewriter->eraseOp(cmerge);
1015
1016 // Return the priming register to be referenced by the exit network builder.
1017 return primingRegister;
1018}
1019
1020void LoopNetworkRewriter::buildExitNetwork(
1021 Block *loopHeader, const llvm::SmallSet<ExitPair, 2> &exitPairs,
1022 BufferOp loopPrimingRegister, Backedge &loopPrimingInput) {
1023 auto loc = loopPrimingRegister.getLoc();
1024
1025 // Iterate over the exit pairs to gather up the condition signals that need to
1026 // be connected to the exit network. In doing so, we parity-correct these
1027 // condition values based on the convention used in buildContinueNetwork - The
1028 // loop mux will on select "0" select external control, and internal control
1029 // at "1". This convention which must be followed by the loop exit network.
1030 // External control must be selected when exiting the loop (to reprime the
1031 // register).
1032 SmallVector<Value> parityCorrectedConds;
1033 for (auto &[condBlock, exitBlock] : exitPairs) {
1034 auto condBr = getControlCondBranch(condBlock);
1035 assert(
1036 condBr &&
1037 "Expected a conditional control branch op in the loop condition block");
1038 Operation *trueUser = *condBr.getTrueResult().getUsers().begin();
1039 bool isTrueParity = trueUser->getBlock() == exitBlock;
1040 assert(isTrueParity ^
1041 ((*condBr.getFalseResult().getUsers().begin())->getBlock() ==
1042 exitBlock) &&
1043 "The user of either the true or the false result should be in the "
1044 "exit block");
1045
1046 Value condValue = condBr.getConditionOperand();
1047 if (isTrueParity) {
1048 // This goes against the convention, and we have to invert the condition
1049 // value before connecting it to the exit network.
1050 rewriter->setInsertionPoint(condBr);
1051 condValue = rewriter->create<arith::XOrIOp>(
1052 loc, condValue.getType(), condValue,
1053 rewriter->create<arith::ConstantOp>(
1054 loc, rewriter->getIntegerAttr(rewriter->getI1Type(), 1)));
1055 }
1056 parityCorrectedConds.push_back(condValue);
1057 }
1058
1059 // Merge all of the parity-corrected exit conditions and assign them
1060 // to the loop priming input.
1061 auto exitMerge = rewriter->create<MergeOp>(loc, parityCorrectedConds);
1062 loopPrimingInput.setValue(exitMerge);
1063}
1064
1065LogicalResult LoopNetworkRewriter::processOuterLoop(Location loc,
1066 CFGLoop *loop) {
1067 // We determine the exit pairs of the loop; this is the in-loop nodes
1068 // which branch off to the exit nodes.
1070 SmallVector<Block *> exitBlocks;
1071 loop->getExitBlocks(exitBlocks);
1072 for (auto *exitNode : exitBlocks) {
1073 for (auto *pred : exitNode->getPredecessors()) {
1074 // is the predecessor inside the loop?
1075 if (!loop->contains(pred))
1076 continue;
1077
1078 ExitPair condPair = {pred, exitNode};
1079 assert(!exitPairs.count(condPair) &&
1080 "identical condition pairs should never be possible");
1081 exitPairs.insert(condPair);
1082 }
1083 }
1084 assert(!exitPairs.empty() && "No exits from loop?");
1085
1086 // The first precondition to our loop transformation is that only a single
1087 // exit pair exists in the loop.
1088 if (exitPairs.size() > 1)
1089 return emitError(loc)
1090 << "Multiple exits detected within a loop. Loop task pipelining is "
1091 "only supported for loops with unified loop exit blocks.";
1092
1093 Block *header = loop->getHeader();
1094 BackedgeBuilder bebuilder(*rewriter, header->front().getLoc());
1095
1096 // Build the loop continue network. Loop continuation is triggered solely by
1097 // backedges to the header.
1098 auto loopPrimingRegisterInput = bebuilder.get(rewriter->getI1Type());
1099 auto loopPrimingRegister = buildContinueNetwork(header, loop->getLoopLatch(),
1100 loopPrimingRegisterInput);
1101
1102 // Build the loop exit network. Loop exiting is driven solely by exit pairs
1103 // from the loop.
1104 buildExitNetwork(header, exitPairs, loopPrimingRegister,
1105 loopPrimingRegisterInput);
1106
1107 return success();
1108}
1109
1110// Return the appropriate branch result based on successor block which uses it
1111static Value getSuccResult(Operation *termOp, Operation *newOp,
1112 Block *succBlock) {
1113 // For conditional block, check if result goes to true or to false successor
1114 if (auto condBranchOp = dyn_cast<mlir::cf::CondBranchOp>(termOp)) {
1115 if (condBranchOp.getTrueDest() == succBlock)
1116 return dyn_cast<handshake::ConditionalBranchOp>(newOp).getTrueResult();
1117 else {
1118 assert(condBranchOp.getFalseDest() == succBlock);
1119 return dyn_cast<handshake::ConditionalBranchOp>(newOp).getFalseResult();
1120 }
1121 }
1122 // If the block is unconditional, newOp has only one result
1123 return newOp->getResult(0);
1124}
1125
1126LogicalResult
1127HandshakeLowering::addBranchOps(ConversionPatternRewriter &rewriter) {
1128
1129 BlockValues liveOuts;
1130
1131 for (Block &block : r) {
1132 for (Operation &op : block) {
1133 for (auto result : op.getResults())
1134 if (isLiveOut(result))
1135 liveOuts[&block].push_back(result);
1136 }
1137 }
1138
1139 for (Block &block : r) {
1140 Operation *termOp = block.getTerminator();
1141 rewriter.setInsertionPoint(termOp);
1142
1143 for (Value val : liveOuts[&block]) {
1144 // Count the number of branches which the liveout needs
1145 int numBranches = getBranchCount(val, &block);
1146
1147 // Instantiate branches and connect to Merges
1148 for (int i = 0, e = numBranches; i < e; ++i) {
1149 Operation *newOp = nullptr;
1150
1151 if (auto condBranchOp = dyn_cast<mlir::cf::CondBranchOp>(termOp))
1152 newOp = rewriter.create<handshake::ConditionalBranchOp>(
1153 termOp->getLoc(), condBranchOp.getCondition(), val);
1154 else if (isa<mlir::cf::BranchOp>(termOp))
1155 newOp = rewriter.create<handshake::BranchOp>(termOp->getLoc(), val);
1156
1157 if (newOp == nullptr)
1158 continue;
1159
1160 for (int j = 0, e = block.getNumSuccessors(); j < e; ++j) {
1161 Block *succ = block.getSuccessor(j);
1162 Value res = getSuccResult(termOp, newOp, succ);
1163
1164 for (auto &u : val.getUses()) {
1165 if (u.getOwner()->getBlock() == succ) {
1166 u.getOwner()->replaceUsesOfWith(val, res);
1167 break;
1168 }
1169 }
1170 }
1171 }
1172 }
1173 }
1174
1175 return success();
1176}
1177
1179 ConversionPatternRewriter &rewriter, bool sourceConstants) {
1180 // Create new constants which have a control-only input to trigger them.
1181 // These are conneted to the control network or optionally to a Source
1182 // operation (always triggering). Control-network connected constants may
1183 // help debugability, but result in a slightly larger circuit.
1184
1185 if (sourceConstants) {
1186 for (auto constantOp : llvm::make_early_inc_range(
1187 r.template getOps<mlir::arith::ConstantOp>())) {
1188 rewriter.setInsertionPointAfter(constantOp);
1189 auto value = constantOp.getValue();
1190 rewriter.replaceOpWithNewOp<handshake::ConstantOp>(
1191 constantOp, value.getType(), value,
1192 rewriter.create<handshake::SourceOp>(constantOp.getLoc(),
1193 rewriter.getNoneType()));
1194 }
1195 } else {
1196 for (Block &block : r) {
1197 Value blockEntryCtrl = getBlockEntryControl(&block);
1198 for (auto constantOp : llvm::make_early_inc_range(
1199 block.template getOps<mlir::arith::ConstantOp>())) {
1200 rewriter.setInsertionPointAfter(constantOp);
1201 auto value = constantOp.getValue();
1202 rewriter.replaceOpWithNewOp<handshake::ConstantOp>(
1203 constantOp, value.getType(), value, blockEntryCtrl);
1204 }
1205 }
1206 }
1207 return success();
1208}
1209
1210/// Holds information about an handshake "basic block terminator" control
1211/// operation
1213 /// The operation
1214 Operation *op;
1215 /// The operation's control operand (must have type NoneType)
1217
1218 BlockControlTerm(Operation *op, Value ctrlOperand)
1219 : op(op), ctrlOperand(ctrlOperand) {
1220 assert(op && ctrlOperand);
1221 assert(isa<NoneType>(ctrlOperand.getType()) &&
1222 "Control operand must be a NoneType");
1223 }
1224
1225 /// Checks for member-wise equality
1226 friend bool operator==(const BlockControlTerm &lhs,
1227 const BlockControlTerm &rhs) {
1228 return lhs.op == rhs.op && lhs.ctrlOperand == rhs.ctrlOperand;
1229 }
1230};
1231
1233 // Identify the control terminator operation and its control operand in the
1234 // given block. One such operation must exist in the block
1235 for (Operation &op : *block) {
1236 if (auto branchOp = dyn_cast<handshake::BranchOp>(op))
1237 if (branchOp.isControl())
1238 return {branchOp, branchOp.getDataOperand()};
1239 if (auto branchOp = dyn_cast<handshake::ConditionalBranchOp>(op))
1240 if (branchOp.isControl())
1241 return {branchOp, branchOp.getDataOperand()};
1242 if (auto endOp = dyn_cast<handshake::ReturnOp>(op))
1243 return {endOp, endOp.getOperands().back()};
1244 }
1245 llvm_unreachable("Block terminator must exist");
1246}
1247
1248static LogicalResult getOpMemRef(Operation *op, Value &out) {
1249 out = Value();
1250 if (auto memOp = dyn_cast<memref::LoadOp>(op))
1251 out = memOp.getMemRef();
1252 else if (auto memOp = dyn_cast<memref::StoreOp>(op))
1253 out = memOp.getMemRef();
1254 else if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
1255 MemRefAccess access(op);
1256 out = access.memref;
1257 }
1258 if (out != Value())
1259 return success();
1260 return op->emitOpError("Unknown Op type");
1261}
1262
1263static bool isMemoryOp(Operation *op) {
1264 return isa<memref::LoadOp, memref::StoreOp, AffineReadOpInterface,
1265 AffineWriteOpInterface>(op);
1266}
1267
1268LogicalResult
1269HandshakeLowering::replaceMemoryOps(ConversionPatternRewriter &rewriter,
1270 MemRefToMemoryAccessOp &memRefOps) {
1271
1272 std::vector<Operation *> opsToErase;
1273
1274 // Enrich the memRefOps context with BlockArguments, in case they aren't used.
1275 for (auto arg : r.getArguments()) {
1276 auto memrefType = dyn_cast<mlir::MemRefType>(arg.getType());
1277 if (!memrefType)
1278 continue;
1279 // Ensure that this is a valid memref-typed value.
1280 if (failed(isValidMemrefType(arg.getLoc(), memrefType)))
1281 return failure();
1282 memRefOps.insert(std::make_pair(arg, std::vector<Operation *>()));
1283 }
1284
1285 // Replace load and store ops with the corresponding handshake ops
1286 // Need to traverse ops in blocks to store them in memRefOps in program
1287 // order
1288 for (Operation &op : r.getOps()) {
1289 if (!isMemoryOp(&op))
1290 continue;
1291
1292 rewriter.setInsertionPoint(&op);
1293 Value memref;
1294 if (getOpMemRef(&op, memref).failed())
1295 return failure();
1296 Operation *newOp = nullptr;
1297
1298 llvm::TypeSwitch<Operation *>(&op)
1299 .Case<memref::LoadOp>([&](auto loadOp) {
1300 // Get operands which correspond to address indices
1301 // This will add all operands except alloc
1302 SmallVector<Value, 8> operands(loadOp.getIndices());
1303
1304 newOp =
1305 rewriter.create<handshake::LoadOp>(op.getLoc(), memref, operands);
1306 op.getResult(0).replaceAllUsesWith(newOp->getResult(0));
1307 })
1308 .Case<memref::StoreOp>([&](auto storeOp) {
1309 // Get operands which correspond to address indices
1310 // This will add all operands except alloc and data
1311 SmallVector<Value, 8> operands(storeOp.getIndices());
1312
1313 // Create new op where operands are store data and address indices
1314 newOp = rewriter.create<handshake::StoreOp>(
1315 op.getLoc(), storeOp.getValueToStore(), operands);
1316 })
1317 .Case<AffineReadOpInterface, AffineWriteOpInterface>([&](auto) {
1318 // Get essential memref access inforamtion.
1319 MemRefAccess access(&op);
1320 // The address of an affine load/store operation can be a result
1321 // of an affine map, which is a linear combination of constants
1322 // and parameters. Therefore, we should extract the affine map of
1323 // each address and expand it into proper expressions that
1324 // calculate the result.
1325 AffineMap map;
1326 if (auto loadOp = dyn_cast<AffineReadOpInterface>(op))
1327 map = loadOp.getAffineMap();
1328 else
1329 map = dyn_cast<AffineWriteOpInterface>(op).getAffineMap();
1330
1331 // The returned object from expandAffineMap is an optional list of
1332 // the expansion results from the given affine map, which are the
1333 // actual address indices that can be used as operands for
1334 // handshake LoadOp/StoreOp. The following processing requires it
1335 // to be a valid result.
1336 auto operands =
1337 expandAffineMap(rewriter, op.getLoc(), map, access.indices);
1338 assert(operands && "Address operands of affine memref access "
1339 "cannot be reduced.");
1340
1341 if (isa<AffineReadOpInterface>(op)) {
1342 auto loadOp = rewriter.create<handshake::LoadOp>(
1343 op.getLoc(), access.memref, *operands);
1344 newOp = loadOp;
1345 op.getResult(0).replaceAllUsesWith(loadOp.getDataResult());
1346 } else {
1347 newOp = rewriter.create<handshake::StoreOp>(
1348 op.getLoc(), op.getOperand(0), *operands);
1349 }
1350 })
1351 .Default([&](auto) {
1352 op.emitOpError("Load/store operation cannot be handled.");
1353 });
1354
1355 memRefOps[memref].push_back(newOp);
1356 opsToErase.push_back(&op);
1357 }
1358
1359 // Erase old memory ops
1360 for (unsigned i = 0, e = opsToErase.size(); i != e; ++i) {
1361 auto *op = opsToErase[i];
1362 for (int j = 0, e = op->getNumOperands(); j < e; ++j)
1363 op->eraseOperand(0);
1364 assert(op->getNumOperands() == 0);
1365
1366 rewriter.eraseOp(op);
1367 }
1368
1369 return success();
1370}
1371
1372static SmallVector<Value, 8> getResultsToMemory(Operation *op) {
1373 // Get load/store results which are given as inputs to MemoryOp
1374
1375 if (handshake::LoadOp loadOp = dyn_cast<handshake::LoadOp>(op)) {
1376 // For load, get all address outputs/indices
1377 // (load also has one data output which goes to successor operation)
1378 SmallVector<Value, 8> results(loadOp.getAddressResults());
1379 return results;
1380
1381 } else {
1382 // For store, all outputs (data and address indices) go to memory
1383 assert(dyn_cast<handshake::StoreOp>(op));
1384 handshake::StoreOp storeOp = dyn_cast<handshake::StoreOp>(op);
1385 SmallVector<Value, 8> results(storeOp.getResults());
1386 return results;
1387 }
1388}
1389
1390static void addLazyForks(Region &f, ConversionPatternRewriter &rewriter) {
1391
1392 for (Block &block : f) {
1393 Value ctrl = getBlockControlTerminator(&block).ctrlOperand;
1394 if (!ctrl.hasOneUse())
1395 insertFork(ctrl, true, rewriter);
1396 }
1397}
1398
1399static void removeUnusedAllocOps(Region &r,
1400 ConversionPatternRewriter &rewriter) {
1401 std::vector<Operation *> opsToDelete;
1402
1403 // Remove alloc operations whose result have no use
1404 for (auto &op : r.getOps())
1405 if (isAllocOp(&op) && op.getResult(0).use_empty())
1406 opsToDelete.push_back(&op);
1407
1408 llvm::for_each(opsToDelete, [&](auto allocOp) { rewriter.eraseOp(allocOp); });
1409}
1410
1411static void addJoinOps(ConversionPatternRewriter &rewriter,
1412 ArrayRef<BlockControlTerm> controlTerms) {
1413 for (auto term : controlTerms) {
1414 auto &[op, ctrl] = term;
1415 auto *srcOp = ctrl.getDefiningOp();
1416
1417 // Insert only single join per block
1418 if (!isa<JoinOp>(srcOp)) {
1419 rewriter.setInsertionPointAfter(srcOp);
1420 Operation *newJoin = rewriter.create<JoinOp>(srcOp->getLoc(), ctrl);
1421 op->replaceUsesOfWith(ctrl, newJoin->getResult(0));
1422 }
1423 }
1424}
1425
1426static std::vector<BlockControlTerm>
1427getControlTerminators(ArrayRef<Operation *> memOps) {
1428 std::vector<BlockControlTerm> terminators;
1429
1430 for (Operation *op : memOps) {
1431 // Get block from which the mem op originates
1432 Block *block = op->getBlock();
1433 // Identify the control terminator in the block
1434 auto term = getBlockControlTerminator(block);
1435 if (std::find(terminators.begin(), terminators.end(), term) ==
1436 terminators.end())
1437 terminators.push_back(term);
1438 }
1439 return terminators;
1440}
1441
1442static void addValueToOperands(Operation *op, Value val) {
1443
1444 SmallVector<Value, 8> results(op->getOperands());
1445 results.push_back(val);
1446 op->setOperands(results);
1447}
1448
1449static void setLoadDataInputs(ArrayRef<Operation *> memOps, Operation *memOp) {
1450 // Set memory outputs as load input data
1451 int ld_count = 0;
1452 for (auto *op : memOps) {
1453 if (isa<handshake::LoadOp>(op))
1454 addValueToOperands(op, memOp->getResult(ld_count++));
1455 }
1456}
1457
1458static LogicalResult setJoinControlInputs(ArrayRef<Operation *> memOps,
1459 Operation *memOp, int offset,
1460 ArrayRef<int> cntrlInd) {
1461 // Connect all memory ops to the join of that block (ensures that all mem
1462 // ops terminate before a new block starts)
1463 for (int i = 0, e = memOps.size(); i < e; ++i) {
1464 auto *op = memOps[i];
1465 Value ctrl = getBlockControlTerminator(op->getBlock()).ctrlOperand;
1466 auto *srcOp = ctrl.getDefiningOp();
1467 if (!isa<JoinOp>(srcOp)) {
1468 return srcOp->emitOpError("Op expected to be a JoinOp");
1469 }
1470 addValueToOperands(srcOp, memOp->getResult(offset + cntrlInd[i]));
1471 }
1472 return success();
1473}
1474
1476 ConversionPatternRewriter &rewriter, ArrayRef<Operation *> memOps,
1477 Operation *memOp, int offset, ArrayRef<int> cntrlInd) {
1478 for (int i = 0, e = memOps.size(); i < e; ++i) {
1479 std::vector<Value> controlOperands;
1480 Operation *currOp = memOps[i];
1481 Block *currBlock = currOp->getBlock();
1482
1483 // Set load/store control inputs from the block input control value
1484 Value blockEntryCtrl = getBlockEntryControl(currBlock);
1485 controlOperands.push_back(blockEntryCtrl);
1486
1487 // Set load/store control inputs from predecessors in block
1488 for (int j = 0, f = i; j < f; ++j) {
1489 Operation *predOp = memOps[j];
1490 Block *predBlock = predOp->getBlock();
1491 if (currBlock == predBlock)
1492 // Any dependency but RARs
1493 if (!(isa<handshake::LoadOp>(currOp) && isa<handshake::LoadOp>(predOp)))
1494 // cntrlInd maps memOps index to correct control output index
1495 controlOperands.push_back(memOp->getResult(offset + cntrlInd[j]));
1496 }
1497
1498 // If there is only one control input, add directly to memory op
1499 if (controlOperands.size() == 1)
1500 addValueToOperands(currOp, controlOperands[0]);
1501
1502 // If multiple, join them and connect join output to memory op
1503 else {
1504 rewriter.setInsertionPoint(currOp);
1505 Operation *joinOp =
1506 rewriter.create<JoinOp>(currOp->getLoc(), controlOperands);
1507 addValueToOperands(currOp, joinOp->getResult(0));
1508 }
1509 }
1510}
1511
1512LogicalResult
1513HandshakeLowering::connectToMemory(ConversionPatternRewriter &rewriter,
1514 MemRefToMemoryAccessOp memRefOps, bool lsq) {
1515 // Add MemoryOps which represent the memory interface
1516 // Connect memory operations and control appropriately
1517 int mem_count = 0;
1518 for (auto memory : memRefOps) {
1519 // First operand corresponds to memref (alloca or function argument)
1520 Value memrefOperand = memory.first;
1521
1522 // A memory is external if the memref that defines it is provided as a
1523 // function (block) argument.
1524 bool isExternalMemory = isa<BlockArgument>(memrefOperand);
1525
1526 mlir::MemRefType memrefType =
1527 cast<mlir::MemRefType>(memrefOperand.getType());
1528 if (failed(isValidMemrefType(memrefOperand.getLoc(), memrefType)))
1529 return failure();
1530
1531 std::vector<Value> operands;
1532
1533 // Get control terminators whose control operand need to connect to memory
1534 std::vector<BlockControlTerm> controlTerms =
1535 getControlTerminators(memory.second);
1536
1537 // In case of LSQ interface, set control values as inputs (used to
1538 // trigger allocation to LSQ)
1539 if (lsq)
1540 for (auto valOp : controlTerms)
1541 operands.push_back(valOp.ctrlOperand);
1542
1543 // Add load indices and store data+indices to memory operands
1544 // Count number of loads so that we can generate appropriate number of
1545 // memory outputs (data to load ops)
1546
1547 // memory.second is in program order
1548 // Enforce MemoryOp port ordering as follows:
1549 // Operands: all stores then all loads (stdata1, staddr1, stdata2,...,
1550 // ldaddr1, ldaddr2,....) Outputs: all load outputs, ordered the same as
1551 // load addresses (lddata1, lddata2, ...), followed by all none outputs,
1552 // ordered as operands (stnone1, stnone2,...ldnone1, ldnone2,...)
1553 std::vector<int> newInd(memory.second.size(), 0);
1554 int ind = 0;
1555 for (int i = 0, e = memory.second.size(); i < e; ++i) {
1556 auto *op = memory.second[i];
1557 if (isa<handshake::StoreOp>(op)) {
1558 SmallVector<Value, 8> results = getResultsToMemory(op);
1559 operands.insert(operands.end(), results.begin(), results.end());
1560 newInd[i] = ind++;
1561 }
1562 }
1563
1564 int ld_count = 0;
1565
1566 for (int i = 0, e = memory.second.size(); i < e; ++i) {
1567 auto *op = memory.second[i];
1568 if (isa<handshake::LoadOp>(op)) {
1569 SmallVector<Value, 8> results = getResultsToMemory(op);
1570 operands.insert(operands.end(), results.begin(), results.end());
1571
1572 ld_count++;
1573 newInd[i] = ind++;
1574 }
1575 }
1576
1577 // control-only outputs for each access (indicate access completion)
1578 int cntrl_count = lsq ? 0 : memory.second.size();
1579
1580 Block *entryBlock = &r.front();
1581 rewriter.setInsertionPointToStart(entryBlock);
1582
1583 // Place memory op next to the alloc op
1584 Operation *newOp = nullptr;
1585 if (isExternalMemory)
1586 newOp = rewriter.create<ExternalMemoryOp>(
1587 entryBlock->front().getLoc(), memrefOperand, operands, ld_count,
1588 cntrl_count - ld_count, mem_count++);
1589 else
1590 newOp = rewriter.create<MemoryOp>(entryBlock->front().getLoc(), operands,
1591 ld_count, cntrl_count, lsq, mem_count++,
1592 memrefOperand);
1593
1594 setLoadDataInputs(memory.second, newOp);
1595
1596 if (!lsq) {
1597 // Create Joins which join done signals from memory with the
1598 // control-only network
1599 addJoinOps(rewriter, controlTerms);
1600
1601 // Connect all load/store done signals to the join of their block
1602 // Ensure that the block terminates only after all its accesses have
1603 // completed
1604 // True is default. When no sync needed, set to false (for now,
1605 // user-determined)
1606 bool control = true;
1607
1608 if (control &&
1609 setJoinControlInputs(memory.second, newOp, ld_count, newInd).failed())
1610 return failure();
1611
1612 // Set control-only inputs to each memory op
1613 // Ensure that op starts only after prior blocks have completed
1614 // Ensure that op starts only after predecessor ops (with RAW, WAR, or
1615 // WAW) have completed
1616 setMemOpControlInputs(rewriter, memory.second, newOp, ld_count, newInd);
1617 }
1618 }
1619
1620 if (lsq)
1621 addLazyForks(r, rewriter);
1622
1623 removeUnusedAllocOps(r, rewriter);
1624 return success();
1625}
1626
1627LogicalResult
1628HandshakeLowering::replaceCallOps(ConversionPatternRewriter &rewriter) {
1629 for (Block &block : r) {
1630 /// An instance is activated whenever control arrives at the basic block
1631 /// of the source callOp.
1632 Value blockEntryControl = getBlockEntryControl(&block);
1633 for (Operation &op : block) {
1634 if (auto callOp = dyn_cast<mlir::func::CallOp>(op)) {
1635 llvm::SmallVector<Value> operands;
1636 llvm::copy(callOp.getOperands(), std::back_inserter(operands));
1637 operands.push_back(blockEntryControl);
1638 rewriter.setInsertionPoint(callOp);
1639 auto instanceOp = rewriter.create<handshake::InstanceOp>(
1640 callOp.getLoc(), callOp.getCallee(), callOp.getResultTypes(),
1641 operands);
1642 // Replace all results of the source callOp.
1643 for (auto it : llvm::zip(callOp.getResults(), instanceOp.getResults()))
1644 std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
1645 rewriter.eraseOp(callOp);
1646 }
1647 }
1648 }
1649 return success();
1650}
1651
1652namespace {
1653/// Strategy class for SSA maximization during cf-to-handshake conversion.
1654/// Block arguments of type MemRefType and allocation operations are not
1655/// considered for SSA maximization.
1656class HandshakeLoweringSSAStrategy : public SSAMaximizationStrategy {
1657 /// Filters out block arguments of type MemRefType
1658 bool maximizeArgument(BlockArgument arg) override {
1659 return !isa<mlir::MemRefType>(arg.getType());
1660 }
1661
1662 /// Filters out allocation operations
1663 bool maximizeOp(Operation *op) override { return !isAllocOp(op); }
1664};
1665} // namespace
1666
1667/// Converts every value in the region into maximal SSA form, unless the value
1668/// is a block argument of type MemRefType or the result of an allocation
1669/// operation.
1670static LogicalResult maximizeSSANoMem(Region &r,
1671 ConversionPatternRewriter &rewriter) {
1672 HandshakeLoweringSSAStrategy strategy;
1673 return maximizeSSA(r, strategy, rewriter);
1674}
1675
1676static LogicalResult lowerFuncOp(func::FuncOp funcOp, MLIRContext *ctx,
1677 bool sourceConstants,
1678 bool disableTaskPipelining) {
1679 // Only retain those attributes that are not constructed by build.
1680 SmallVector<NamedAttribute, 4> attributes;
1681 for (const auto &attr : funcOp->getAttrs()) {
1682 if (attr.getName() == SymbolTable::getSymbolAttrName() ||
1683 attr.getName() == funcOp.getFunctionTypeAttrName())
1684 continue;
1685 attributes.push_back(attr);
1686 }
1687
1688 // Get function arguments
1689 llvm::SmallVector<mlir::Type, 8> argTypes;
1690 for (auto &argType : funcOp.getArgumentTypes())
1691 argTypes.push_back(argType);
1692
1693 // Get function results
1694 llvm::SmallVector<mlir::Type, 8> resTypes;
1695 for (auto resType : funcOp.getResultTypes())
1696 resTypes.push_back(resType);
1697
1698 handshake::FuncOp newFuncOp;
1699
1700 // Add control input/output to function arguments/results and create a
1701 // handshake::FuncOp of appropriate type
1702 if (partiallyLowerOp<func::FuncOp>(
1703 [&](func::FuncOp funcOp, PatternRewriter &rewriter) {
1704 auto noneType = rewriter.getNoneType();
1705 resTypes.push_back(noneType);
1706 argTypes.push_back(noneType);
1707 auto func_type = rewriter.getFunctionType(argTypes, resTypes);
1708 newFuncOp = rewriter.create<handshake::FuncOp>(
1709 funcOp.getLoc(), funcOp.getName(), func_type, attributes);
1710 rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
1711 newFuncOp.end());
1712 if (!newFuncOp.isExternal()) {
1713 newFuncOp.getBodyBlock()->addArgument(rewriter.getNoneType(),
1714 funcOp.getLoc());
1715 newFuncOp.resolveArgAndResNames();
1716 }
1717 rewriter.eraseOp(funcOp);
1718 return success();
1719 },
1720 ctx, funcOp)
1721 .failed())
1722 return failure();
1723
1724 // Apply SSA maximization
1725 if (partiallyLowerRegion(maximizeSSANoMem, ctx, newFuncOp.getBody()).failed())
1726 return failure();
1727
1728 if (!newFuncOp.isExternal()) {
1729 Block *bodyBlock = newFuncOp.getBodyBlock();
1730 Value entryCtrl = bodyBlock->getArguments().back();
1731 HandshakeLowering fol(newFuncOp.getBody());
1732 if (failed(lowerRegion<func::ReturnOp, handshake::ReturnOp>(
1733 fol, sourceConstants, disableTaskPipelining, entryCtrl)))
1734 return failure();
1735 }
1736
1737 return success();
1738}
1739
1740namespace {
1741
1742struct HandshakeRemoveBlockPass
1743 : circt::impl::HandshakeRemoveBlockBase<HandshakeRemoveBlockPass> {
1744 void runOnOperation() override { removeBasicBlocks(getOperation()); }
1745};
1746
1747struct CFToHandshakePass
1748 : public circt::impl::CFToHandshakeBase<CFToHandshakePass> {
1749 CFToHandshakePass(bool sourceConstants, bool disableTaskPipelining) {
1750 this->sourceConstants = sourceConstants;
1751 this->disableTaskPipelining = disableTaskPipelining;
1752 }
1753 void runOnOperation() override {
1754 ModuleOp m = getOperation();
1755
1756 for (auto funcOp : llvm::make_early_inc_range(m.getOps<func::FuncOp>())) {
1757 if (failed(lowerFuncOp(funcOp, &getContext(), sourceConstants,
1758 disableTaskPipelining))) {
1759 signalPassFailure();
1760 return;
1761 }
1762 }
1763 }
1764};
1765
1766} // namespace
1767
1768std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
1770 bool disableTaskPipelining) {
1771 return std::make_unique<CFToHandshakePass>(sourceConstants,
1772 disableTaskPipelining);
1773}
1774
1775std::unique_ptr<mlir::OperationPass<handshake::FuncOp>>
1777 return std::make_unique<HandshakeRemoveBlockPass>();
1778}
static ConditionalBranchOp getControlCondBranch(Block *block)
static LogicalResult lowerFuncOp(func::FuncOp funcOp, MLIRContext *ctx, bool sourceConstants, bool disableTaskPipelining)
static Operation * getControlMerge(Block *block)
static bool isMemoryOp(Operation *op)
static std::vector< Value > getSortedInputs(ControlMergeOp cmerge, MuxOp mux)
static LogicalResult setJoinControlInputs(ArrayRef< Operation * > memOps, Operation *memOp, int offset, ArrayRef< int > cntrlInd)
static void addJoinOps(ConversionPatternRewriter &rewriter, ArrayRef< BlockControlTerm > controlTerms)
static void addLazyForks(Region &f, ConversionPatternRewriter &rewriter)
static bool isLiveOut(Value val)
static Operation * getFirstOp(Block *block)
Returns the first occurance of an operation of type TOp, else, returns null op.
static unsigned getBlockPredecessorCount(Block *block)
static int getBranchCount(Value val, Block *block)
static Operation * findBranchToBlock(Block *block)
static Value getSuccResult(Operation *termOp, Operation *newOp, Block *succBlock)
static Value getMergeOperand(HandshakeLowering::MergeOpInfo mergeInfo, Block *predBlock)
static LogicalResult isValidMemrefType(Location loc, mlir::MemRefType type)
static bool isAllocOp(Operation *op)
static Value getOperandFromBlock(MuxOp mux, Block *block)
static LogicalResult getOpMemRef(Operation *op, Value &out)
static LogicalResult partiallyLowerOp(const std::function< LogicalResult(TOp, ConversionPatternRewriter &)> &loweringFunc, MLIRContext *ctx, TOp op)
static void addValueToOperands(Operation *op, Value val)
static bool loopsHaveSingleExit(CFGLoopInfo &loopInfo)
static SmallVector< Value, 8 > getResultsToMemory(Operation *op)
static void removeBlockOperands(Region &f)
static void removeUnusedAllocOps(Region &r, ConversionPatternRewriter &rewriter)
static LogicalResult maximizeSSANoMem(Region &r, ConversionPatternRewriter &rewriter)
Converts every value in the region into maximal SSA form, unless the value is a block argument of typ...
static BlockControlTerm getBlockControlTerminator(Block *block)
static std::vector< BlockControlTerm > getControlTerminators(ArrayRef< Operation * > memOps)
static void reconnectMergeOps(Region &r, HandshakeLowering::BlockOps blockMerges, HandshakeLowering::ValueMap &mergePairs)
static void setLoadDataInputs(ArrayRef< Operation * > memOps, Operation *memOp)
assert(baseType &&"element must be base type")
static void mergeBlock(Block &destination, Block::iterator insertPoint, Block &source)
Move all operations from a source block in to a destination block.
Strategy strategy
LowerRegionTarget(MLIRContext &context, Region &region)
Instantiate one of these and use it to build typed backedges.
Backedge get(mlir::Type resultType, mlir::LocationAttr optionalLoc={})
Create a typed backedge.
Backedge is a wrapper class around a Value.
void setValue(mlir::Value)
Strategy class to control the behavior of SSA maximization.
Definition Passes.h:70
BlockOps insertMergeOps(ValueMap &mergePairs, BackedgeBuilder &edgeBuilder, ConversionPatternRewriter &rewriter)
MergeOpInfo insertMerge(Block *block, Value val, BackedgeBuilder &edgeBuilder, ConversionPatternRewriter &rewriter)
LogicalResult loopNetworkRewriting(ConversionPatternRewriter &rewriter)
DenseMap< Block *, std::vector< MergeOpInfo > > BlockOps
LogicalResult feedForwardRewriting(ConversionPatternRewriter &rewriter)
LogicalResult replaceCallOps(ConversionPatternRewriter &rewriter)
void setMemOpControlInputs(ConversionPatternRewriter &rewriter, ArrayRef< Operation * > memOps, Operation *memOp, int offset, ArrayRef< int > cntrlInd)
LogicalResult addMergeOps(ConversionPatternRewriter &rewriter)
LogicalResult replaceMemoryOps(ConversionPatternRewriter &rewriter, MemRefToMemoryAccessOp &memRefOps)
DenseMap< Block *, std::vector< Value > > BlockValues
LogicalResult connectConstantsToControl(ConversionPatternRewriter &rewriter, bool sourceConstants)
llvm::MapVector< Value, std::vector< Operation * > > MemRefToMemoryAccessOp
LogicalResult runSSAMaximization(ConversionPatternRewriter &rewriter, Value entryCtrl)
DenseMap< Block *, Value > blockEntryControlMap
DenseMap< Value, Value > ValueMap
Value getBlockEntryControl(Block *block) const
void setBlockEntryControl(Block *block, Value v)
LogicalResult connectToMemory(ConversionPatternRewriter &rewriter, MemRefToMemoryAccessOp memRefOps, bool lsq)
LogicalResult addBranchOps(ConversionPatternRewriter &rewriter)
FuncOp create(Union[StringAttr, str] sym_name, List[Tuple[str, Type]] args, List[Tuple[str, Type]] results, Dict[str, Attribute] attributes={}, loc=None, ip=None)
Definition handshake.py:36
void insertFork(Value result, bool isLazy, OpBuilder &rewriter)
Adds fork operations to any value with multiple uses in r.
llvm::function_ref< LogicalResult(Region &, ConversionPatternRewriter &)> RegionLoweringFunc
void removeBasicBlocks(Region &r)
Remove basic blocks inside the given region.
LogicalResult partiallyLowerRegion(const RegionLoweringFunc &loweringFunc, MLIRContext *ctx, Region &r)
The InstanceGraph op interface, see InstanceGraphInterface.td for more details.
LogicalResult maximizeSSA(Value value, PatternRewriter &rewriter)
Converts a single value within a function into maximal SSA form.
std::unique_ptr< mlir::OperationPass< mlir::ModuleOp > > createCFToHandshakePass(bool sourceConstants=false, bool disableTaskPipelining=false)
std::unique_ptr< mlir::OperationPass< handshake::FuncOp > > createHandshakeRemoveBlockPass()
Holds information about an handshake "basic block terminator" control operation.
friend bool operator==(const BlockControlTerm &lhs, const BlockControlTerm &rhs)
Checks for member-wise equality.
Value ctrlOperand
The operation's control operand (must have type NoneType)
BlockControlTerm(Operation *op, Value ctrlOperand)
Operation * op
The operation.
Allows to partially lower a region by matching on the parent operation to then call the provided part...
PartialLoweringFunc fun
LogicalResult matchAndRewrite(Operation *op, ArrayRef< Value >, ConversionPatternRewriter &rewriter) const override
std::function< LogicalResult(Region &, ConversionPatternRewriter &)> PartialLoweringFunc
PartialLowerRegion(LowerRegionTarget &target, MLIRContext *context, LogicalResult &loweringResRef, const PartialLoweringFunc &fun)
LogicalResult & loweringRes
LowerRegionTarget & target